


User's Handbook

V8.640 Series

Models V8.640 and TV8.640 TPD1196

USERS HANDBOOK

V8.640 Series Diesel Engines V8.640 and TV8.640

Publication 201 TPD 0586 1196 © All rights reserved May 1986 Perkins Engines Ltd., Peterborough, England. This publication is written in Perkins Approved Clear English

PACE

ontents

General information			• • •	4	Instructions for maintenance	2:
Introduction		• • •		4	Air filtor	22
Safety precautions				5	Restriction indicator	22
CARECARD				6	To repose the behalisation of the	23
Engine identification				7	To shook the drive helts	24
Perkins companies		•••		8	To check the value tip eleganness	
•	•	***	•••	J	To repose the final filter alamants	25
Engine views				9	To romove oir from the first and a	26
	• •••	•••	•••	J	Atomicor foult	28
Engine data				11		32
	•••	•••	•••	1.	To renew an atomiser	32
Instructions for operation				10	To clean the engine breather	33
Tallet all the second			• • •	12		
To start the engine		• • •	• • •	12	Protection of an engine not in service	34
To stop the engine		•••	• • •	16		
Engine speed adjustment			• • • •	16	Fault diagnosis	35
Running-in procedure	• • •			16		
Altitude	***	•••	•••	16	POWERPART consumable products	38
Engine fluids	•••	•••		17	Examples of service assistance	39
Coolant specification				17	Examples of service assistance	JJ
To drain the cooling system				17	Parts illustrations	40
Fuel specification		• • •		18		
Lubricating oil specification			•••	19	rant descriptions	51
					Latest information	53
Preventive maintenance				20		75
Schedules	•••	• • •		20		
Post delivery service	•••		•••	21		

General information

Introduction

This handbook has been written to give you assistance in the correct maintenance and operation of your engine.

To get the best performance and longest life from your engine, you must have the maintenance operations done at the periods shown in Preventive maintenance. If the engine operates in very dusty or other adverse conditions, some maintenance periods will have to be reduced. Keep your engine clean inside by regular filter element and lubricating oil changes.

Ensure that all adjustments and repairs are done by personnel who have had the correct training. Perkins Distributors have these personnel available. You can also get parts and other service from your Perkins Distributor. If you do not know the location of your nearest distributor, check with one of the Perkins companies given on page 8.

The left and right sides of the engine are as seen from the rear.

Read and remember the 'Safety precautions'. These are given for your protection and must be used at all times.

Safety precautions

These safety precautions are important. Reference must also be made to the local regulations in the country of operation.

- Do not use these engines in marine applications.
- Do not change the specification of the engine.
- Do not smoke when you put fuel in the tank.
- Clean away any fuel which has falle and move material which has fuel contamination to a safe place.
- Do not put fuel in the tank during engine operation (unless really necessary).
- Never clean, lubricate or adjust the engine during operation (unless you have had the correct training when extreme caution must be used to prevent injury).
- Do not make any adjustments you do not understand.
- Ensure the engine is not in a position to cause a concentration of toxic emissions.
- Persons in the area must be kept clear during engine and equipment or vehicle operation.
- Do not permit loose clothing or long hair near parts which move.
- Keep away from parts which turn during operation.
 Note that fans can not be seen clearly while the engine runs.
- Do not run the engine with any safety guards removed.
- Do not remove the radiator cap while the engine is hot and the coolant is under pressure as dangerous hot coolant can be discharged.

- Do not use salt water in the cooling system or any other coolant which can cause corrosion.
- Keep sparks or fire away from batteries (especially while during charge) or combustion can occur. The battery fluid can burn and is also dangerous to the skin and especially the eyes.
- Disconnect the battery terminals before you make a repair to the electrical system.
- Only one person must be in control of the engine.
- Ensure the engine is only operated from the control panel or operators position.
- If your skin comes into contact with high pressure fuel, get medical assistance immediately.
- Diesel fuel can cause skin damage to some persons.
 Use protection on the hands (gloves or special skin protection solutions).
- Do not move equipment unless the brakes are in good condition.
- Ensure that the transmission drive control is in 'out of drive' position before the engine is started.
- Fit only correct Perkins parts.

CARECARD

This is a system for operators of equipment fitted with Perkins engines to introduce them to their nearest Perkins distributor where the distributor is responsible for the engine service.

When you get your new vehicle, remove the label (1, fig. 1) from the engine and send it to your Perkins distributor and he will supply you with a **CARE**CARD (2, fig. 1) and full instructions for its use.

Every time you need service or information, give the **CARE**-CARD to your distributor and it will enable him to give you the best service with the use of Perkins parts and will also ensure that you get the best performance from your Perkins engine at all times.

Fig. 1 CARECARD label and CARECARD.

Engine identification

The information given in this handbook applies to the naturally aspirated V8.640 engine and/or the turbocharged TV8.640 engine.

The first two letters of the engine number give an indication of the engine type as shown below:

ZA - V8.640 engine

ZB - TV8.640 engine

The engine number is stamped on a machined pad on the top of the inside rear end of the left bank of the cylinder block (see fig. 2).

A typical engine number is ZA50081U513731J.

If you need any parts, service or information for your engine, you must give the complete engine number to your Perkins distributor.

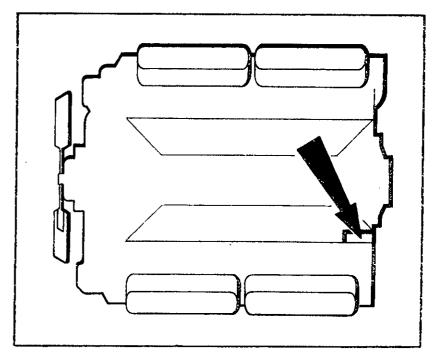


Fig. 2 Engine number position

Perkins companies

Australia

Perkins Engines Australia Pty. Limited, P.O. Box 156, 22-24 Elliott Road, Dandenong, Victoria, Australia. Telephone: 794 6555. Telex: AA30816.

Cable: 'Perkoil' Melbourne.

France

-Moteurs Perkins-S.A., 9-11 Avenue Michelet, 93407 Saint Ouen, Cedex, France. Telephone: 223 20 00. Telex: 642924F. Cable: Perkoil Paris.

Germany

Perkins Motoren G.m.b.H., 8752 Kleinostheim, Postfach 1180, West Germany. Telephone: 06027 5010. Telex: 4188869A PER D.

Italy

Motori Perkins S.p.A., Via Gorizia 15, P.O. Box 12, 22070 Portichetto/ Luisago (Como), Italy.

أحدث المتاه شجانا

Telephone: (031) 927364. Telex: 380658 Perkit I. Cable: Perkoil Portichetto.

Japan

Massey Ferguson Perkins Engines K.K.,
Reinanzaka Building, 6th Floor,
14-2 Akasaka, 1-chome, Minato-ku,
Tokyo 107, Japan.
Telephone: (03) 586 7(377;
Telex: Perkoil J2424823.
Cable: Perkoil Tokyo

Singapore

Perkins Engines Asia Pacific, 549 Upper Thompson Road, Singapore 2057. Telephone: 4521841. Telex: RS 37729.

Fax: (03) 582-1596.

United Kingdom

the said

Perkins Engines Limited, Eastfield, Peterborough PE1 5NA, Englano Telephone: (0733) 67474. Telex: 32501 Perken G. Cable: 'Perkoil' Peterborough.

Perkins Engines (Shrewsbury) Limited, Sentinel Works, Shrewsbury SY1 4DP, England. Telephone: (0743) 52262. Telex: 35171/2 PESL G.

U.S.A.

Perkins Engines Inc.,
P.O. Box 697,
32500 Van Born Road, Wayne,
Michigan 48184, U.S.A.
Teleprione: (313) 595 9600.
Telex: 234002 Perken Wane,
Cable: Perken Wane.

Perkins Engines Latin America Inc., P.O. Box 697, 32500 Van Born Road, Wayne, Michigan 48184, U.S.A. Telephone: (313) 595 9600. Telex: 234002 Perken Wane.

Cable: Perken Wane.

In addition to the above, there are Perkins distributors in most countries. Perkins Engines Ltd., Peterborough or one of the above companies can give details.

Engine views

Perkins engines are made for specific applications and the views which follow are not necessarily for your engine specification.

- 1 Thermostat housing left bank
- 2 Compressor
- 3 Fuel filter
- 4 Induction manifold left bank
- 5 Rear left engine lift bracket
- 6 Atomiser
- 7 Atomiser clamp
- 8 Flywheel housing
- 9 Lubricating oil cooler
- 10 Lubricating oil filter canister
- 11 Crankshaft manual rotation ring
- 12 Belt tensioner pulley
- 13 Water pump pulley
- 14 Tachometer generator

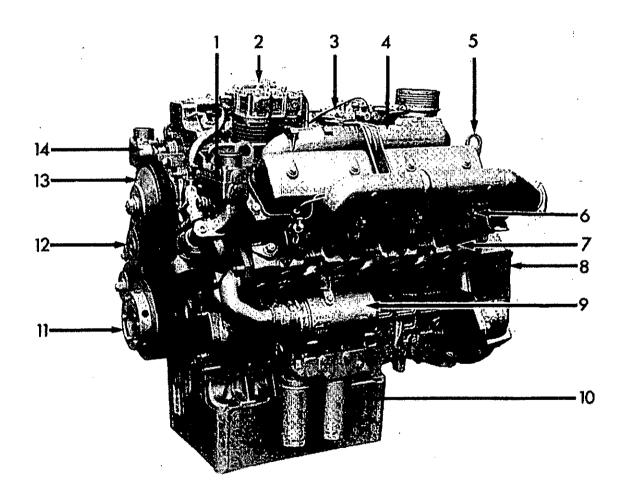


Fig. 3 Front left side of V8.640 engine.

- 15 Turbocharger
- 16 Lubricating oil filler
- 17 Induction crossover pipe
- 18 Fuel injection pump
- 19 Fuel lift pump
- 20 Front right engine lift bracket
- 21 Rocker cover
- 22 Exhaust manifold
- 23 Alternator
- 24 Starter motor
- 25 Lubricating oil sump
- 26 Sump drain plug
- 27 Flywhee!
- 28 Exhaust outlet

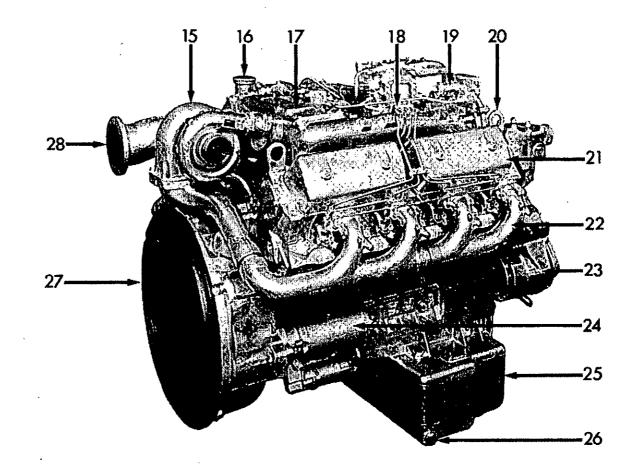


Fig. 4 Rear right side of TV8.640 engine

Engine data

•	V8.640	TV8.640	
Number of cylinders	Eight	Eight	
Cylinder arrangement	Two banks, 90°V	Two banks, 90°V	
Cycle	Four stroke	Four stroke	
Induction system	Naturally aspirated	Turbocharged	
Combustion system	Direct injection	Direct injection	
Nominal bore	118 mm (4.63 in)	118 mm (4.63 in)	
Stroke	121 mm (4.75 in)	121 mm (4.75 in)	
Compression ratio	16.25 : 1	14.95 : 1	
Cubic capacity	10,48 litres (640 in ³)	10,48 litres (640 in ³)	
Firing order	1, 8, 7, 5, 4, 3, 6, 2	1, 8, 7, 5, 4, 3, 6, 2	
Valve tip clearance (set cold)			
Inlet	0,25 mm (0.010 in)	0,25 mm (0.010 in)	
Exhaust	0,65 mm (0.025 in)	0,65 mm (0.025 in)	
Lubricating oil pressure	310 kN/m²(45 lbf/in²) 3,2 kgf/cm² minimum at maximum engine speed and normal engine temperature.		
Direction of rotation	Clockwise from the front.		

Instructions for operation

To start the engine

There are several factors which effect engine start, for example:

The power of the batteries.
Performance of the starter motor.
Viscosity of the lubricating oil.
Installation of a cold start system.

The two types of fuel injection pump that can be fitted to these engines have an integral excess fuel device to supply more fuel to the cylinders during a cold engine start. When the engine starts this supply of extra fuel is stopped automatically.

If these engines are to operate in very cold conditions, an extra cold starting aid will be necessary. Your machine will normally be fitted with the correct equipment for your area of operation.

Different systems of cold starting aids can be installed on Perkins diesel engines and they are:

Thermostart

An electrically operated device which heats the induction air. This device burns a controlled amount of fuel.

Start Pilot

A hand pump discharges the cold start fluid into the induction manifold through an atomiser. The cold start fluid is held in a separate reservoir.

KBi

The cold start fluid is held in an aerosol container. It is released by a push button operated solenoid and sprayed into the induction manifold by a nozzle.

Note: If the engine is fitted with an in line fuel injection pump and has not been run for at least one month, lubricating oil must be added to the pump before the engine is started. Remove one of the large plugs fitted each side of the governor housing (see fig. 5) and add 0,6 litre (1 pint) of clean engine lubricating oil. During normal operation the engine lubrication system automatically lubricates the pump.

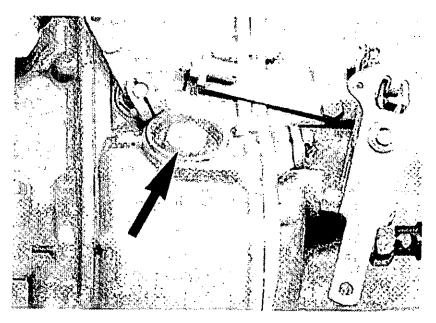


Fig. 5 In line fuel injection pump lubricating oil filler plug

To start a warm engine

- 1 Ensure that the stop control (where fitted) is in the 'run' position.
- 2 Adjust the engine speed control to the half open position.
- 3 Turn the start key to the 'S' or 'HS' position (see fig. 6 or 7) to engage the starter motor.
- 4 As soon as the engine starts, release the start key to the 'R' position.
- 5 Adjust the engine speed control.

Always ensure that the flywheel and starter motor are stationary before the starter motor is engaged again.

To start a cold engine with excess fuel

- 1 Ensure that the stop control (where fitted) is in the 'run' position.
- 2 Turn the start key to the 'R' position (see fig. 6 or 7).
- 3 Engines fitted with a rotary fuel injection pump:

Adjust the engine speed control to the fully open position.

Operate the excess fuel control.

Engines fitted with an in line fuel injection pump:

Move the engine speed control to the fully closed position and then to the fully open position. This operation engages the excess fuel device.

- 4 Turn the start key to position 'S' or 'HS' to engage the starter motor.
- **5** As soon as the engine starts, release the start key to position 'R'.
- 6 Adjust the engine speed control. On engines fitted with an in line fuel injection pump, do not close the engine speed control until the engine runs evenly.

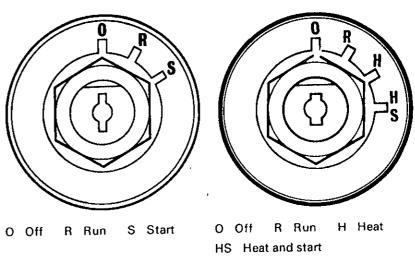


Fig. 6 Typical start switch Fig. 7 Typical heat/start switch

To start an engine with Thermostart

- 1 Ensure that the stop control (where fitted) is in the 'run' position.
- 2 Turn the start key to the 'R' position (see fig. 7).
- 3 Engines fitted with a rotary fuel injection pump:

Adjust the engine speed control to the fully open position.

Operate the excess fuel control.

Engines fitted with an in line fuel injection pump:

Move the engine speed control to the fully closed position and then to the fully open position. This operation engages the excess fuel device.

- 4 Turn the start key to the 'H' position to operate the heaters and hold it there for 15 to 20 seconds.
- 5 Turn the start key to the 'HS' position to engage the starter motor. As soon as the engine starts, release the start key to the 'R' position and adjust the engine speed control. On engines fitted with an in line fuel injection pump, do not close the engine speed control until the engine runs evenly.
- 6 If the engine does not start in 15 seconds, return the start key to the 'H' position for 10 seconds and then engage the starter motor again.

To start an engine with Start Pilot

The Start Pilot hand pump must not be used until the starter motor is engaged. Experience will show how much fluid is needed for each engine start.

- 1 Where necessary, charge the reservoir with fluid. Raise the cover of the reservoir and press the can, head down, on to the filler plug. Hold the can squarely on the plug until fluid fills the bowl up to the maximum mark.
- 2 Ensure that the stop control (where fitted) is in the 'run' position.
- 3 Turn the start key to the 'R' position (see fig. 6).
- 4 Engines fitted with a rotary fuel injection pump:

Adjust the engine speed control to the fully open position. Operate the excess fuel control.

Engines fitted with an in line fuel injection pump:

Move the engine speed control to the fully closed position and then to the fully open position. This operation engages the excess fuel device.

'5 Turn the start key to the position S' to engage the starter motor for a maximum of 30 seconds and operate the Start Pilot pump during this period. As soon as the engine starts, release the start key to position 'R' and adjust the engine speed control. On engines fitted with an in line

fuel injection pump, do not close the engine speed control until the engine runs evenly.

6 If the engine does not start during the first 30 seconds, turn the start key to position 'R' for 30 seconds and then engage the starter motor again and operate the Start Pilot pump.

The air filter at the outer end of the pump must be inspected from time to time and, if necessary, it must be washed in kerosene.

The inside surface of the cylinder can be lightly lubricated with a thin lubricating oil.

The nozzle in the induction manifold can be removed and washed in kerosene, when necessary.

Start Pilot equipment must not be used with heat type cold starting aids such as Thermostart.

To start an engine with KBi

- 1 Where necessary, renew the screw type canister. A safety valve is integral with the container.
- 2 Ensure that the stop control (where fitted) is in the 'run' position.

- 3 Turn the start key to the 'R' position (see fig. 6).
- 4 Engines fitted with a rotary fuel injection pump:

Adjust the engine speed control to the fully open position. Operate the excess fuel control.

Engines fitted with an in line fuel injection pump:

Move the engine speed control to the fully open position and then to the fully open position. This operation engages the excess fuel device.

- 5 Turn the start key to the position 'S' to engage the starter motor.
- 6 As the engine turns, press the KBi button for a maximum period of 2 seconds. If the engine does not start after the first 2 second application, keep the starter motor engaged and after 5 seconds press the KBi button again for 2 seconds.

In some conditions, it is necessary to give another application of KBi fluid after the engine has started to ensure that the engine continues to run.

KBi equipment must not be used with heat type cold starting aids such as Thermostart.

To stop the engine

Either turn the engine start key to the 'O' position (see fig. 6 or 7) or operate the separate stop control. Where a separate stop control is used, ensure that the control is returned to the 'run' position after the engine has stopped and the engine start key is turned to the 'O' position:

Let the TV8.640 engine run at a low speed for a few moments before it is stopped.

Engine speed adjustment

The idle or maximum speed settings must not be changed by the engine operator as this can damage the engine or transmission. If the seals on the fuel injection pump are broken during the warranty period by a person who is not approved by Perkins Engines Ltd., it can have an effect on the warranty.

Running-in procedure

A gradual running-in of a new or Power Exchange engine is not necessary. Extended light load operation during the early life of the engine is not recommended. Full load can be applied to a new or Power Exchange engine as soon as the engine is put into service and the coolant temperature is at a minimum of 60°C (140°F).

Do not run the engine at high no load speeds.

Do not apply an overload to the engine.

Altitude

If the naturally aspirated engine is to operate at an altitude higher than 600 m (2,000 ft), the fuel delivery can be changed to reduce smoke and fuel consumption. Perkins Engines Ltd. can give the percentage of fuel reduction needed if details of engine application and ambient conditions are given. Information for turbocharged engines is available from Perkins Engines Ltd. Any change to the fuel injection pump settings must be made by a Perkins distributor or an approved fuel pump distributor.

Turbocharged vehicle applications

Because of the power characteristics of the turbocharged engine, it is necessary to keep a high engine speed when you drive up a gradient. Do not apply an overload to the engine at low engine speed, change to a lower gear to increase the engine speed.

Engine fluids

Coolant specification

The quality of the coolant used can have a large effect on the efficiency and life of the cooling system. The recommendations given below can be of assistance in the maintenance of a good cooling system with frost and/or corrosion protection.

If the correct procedures are not used, Perkins Engines Ltd. can not be held responsible for any frost or corrosion damage.

- 1 Where possible, use clean soft water.
- 2 If an antifreeze mixture, other than Perkins POWERPART, is used to prevent frost damage, it must have an ethanediol (ethylene glycol) base with a corrosion inhibitor. It is recommended that the corrosion inhibitor is of the sodium nitrite/benzoate type. The antifreeze mixture must provide cooling/corrosion protection at least as good as the requirements of the standards below:

United Kingdom: BS.6580:1985: "Specification for corrosion inhibiting, engine coolant concentrate (antifreeze)".

United States of America: ASTM D3306-74: "Ethylene Glycol Base Engine Coolant".

Australia: AS 2108-1977: "Antifreeze Compounds and Corrosion Inhibitors for Engine Cooling Systems".

Perkins POWERPART antifreeze exceeds the requirements of the above standards.

The correct volumes of Perkins POWERPART antifreeze and water, which are necessary for protection at different ambient temperatures, are indicated below.

Lowest temperature of protection needed	Volume of POWERPART antifreeze %	Mixture ratio by volume POWERPART antifreeze: water
-12°C (10°F)	25	1:3
-18°C (0°F)	33	1:2
-25°C (-13°F)	40	1:1.5
-37°C (-34°F)	50	1:1

The quality of the antifreeze coolant must be checked at least once a year, for example, at the start of the cold period.

3 When frost protection is not necessary, it is still an advantage to use an approved antifreeze mixture (see 2 above) as this gives a protection against corrosion and also raises the boiling point of the coolant. A minimum concentration of 25% by volume of antifreeze is necessary, but it is our recommendation that 33% concentration by volume is used.

If an antifreeze is not used, add a correct corrosion inhibitor mixture to the water.

Change the water/corrosion inhibitor mixture every six months or check according to the inhibitor manufacturer's recommendations.

Note: Some corrosion inhibitor mixtures contain soluble oil which can have an adverse effect on some types of water hose.

To drain the cooling system

- 1 Ensure that the vehicle or machine is on level ground.
- 2 Remove the radiator filler cap.

- 3 Remove the drain plug from each side of the cylinder block (see fig. 8) to drain the engine. Ensure that the drain holes do not have any restriction.
- 4 Open the tap or remove the drain plug at the bottom of the radiator to drain the radiator. If a tap or plug is not fitted to the radiator, disconnect the bottom radiator hose. Remove the lubricating oil cooler drain plug.
- 5 Where necessary, flush the system with clean water.
- 6 Fit the drain plugs and radiator cap. Where necessary, close the radiator tap or connect the radiator hose.
- 7 Put 250 ml (1/2 pint) of antifreeze, without water, into the oil cooler for protection against frost if water drains down when the machine is moved. The antifreeze can be added through the compressor coolant hose connection at the top of the water pump outlet to the oil cooler. If a compressor is not fitted, remove the plug that is fitted in place of the coolant hose connection to add the antifreeze.

Fuel specification

To get the correct power and performance from your engine, use good quality fuel. The recommended fuel specification for Perkins engines is indicated below:

Cetane number 50 minimum for vehicles

45 minimum for industrial and

agricultural applications

Viscosity 2.5/4.5 centistokes at 40°C

Density 0,835/0,855 kg/litre

Sulphur 0.5% of mass, maximum

Distillation 85% at 350°C

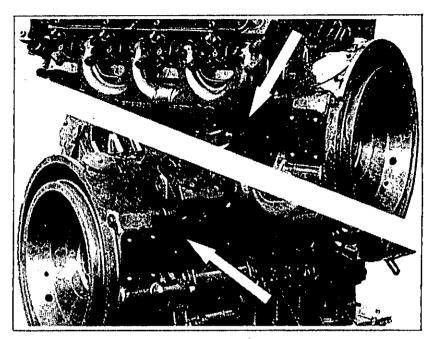


Fig. 8 Coolant drain points.

Cetane number indicates ignition performance. Fuel with a low cetane number can cause cold start problems and affect combustion.

Viscosity is the resistance to flow and, if this is outside the limits, engine performance can be affected.

Density: Lower density will reduce engine power, higher density will increase engine power and exhaust smoke.

Sulphur: High sulphur content (not normally found in Europe, North America or Australasia) can cause engine wear. Where only high sulphur fuels are available, it will be necessary to use a highly alkaline lub-

ricating oil in the engine or to reduce the lubricating oil change interval.

Distillation: This is an indication of the mixture of different hydrocarbons in the fuel. A high ratio of light weight hydrocarbons can affect the combustion characteristics.

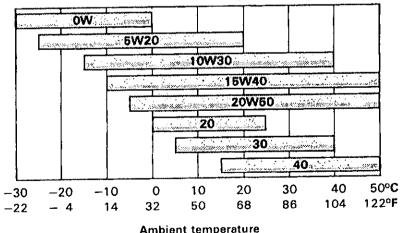
Low temperature fuels: Special winter fuels may be available for engine operation at temperatures below O°C. These fuels have a lower viscosity and also limit the wax formation in the fuel at low temperatures. If wax formation occurs, this could stop the fuel flow through the filter.

Aviation kerosene fuels: These fuels can be used but they can affect engine performance. It is recommended that you consult the Perkins Technical Service Department at Peterborough, especially if JP4 fuel is to be used. Aviation fuels are more flammable than diesel fuel and need careful storage and management.

If you need advice on any adjustment to the engine or to the lubricating oil change periods which may be necessary because of the standard of available fuel, consult your nearest Perkins distributor or the Technical Service Department at one of the addresses on Page 8.

Lubricating oil specification

Use only a good quality lubricating oil to the relevant specification as shown in the table below.


Attention: The type of lubricating oil used may be affected by the quality of the fuel oil which is used. For further details see "Fuel specification" on page 18.

	Specifications		
<u> </u>	API CC/SE	API CD/SE	
Engine Type	MIL-L-46152	MIL-L-2104C	
	CCMC D1	CCMC D2	
Naturally aspirated	•	• (1)	
Naturally aspirated engines in heavy duty earthmoving equipment		•	
Turbocharged		•	

(1) Not recommended for the first 800/1600 km (500/1000 miles) or 25/50 hours of operation.

Always ensure that the correct viscosity grade of lubricating oil is used for the ambient temperature range in which the engine will run as shown in the chart below.

Recommended SAE viscosity grades

Preventive maintenance

These preventive maintenance periods are general in application. Check the periods given by the manufacturer of the equipment in which the engine is installed and, where necessary, use the shorter periods. These periods and procedures must also be adapted to ensure correct operation for any local vehicle or machine regulations.

Note: On stop/start short distance operation the hours run are more important than the distance.

It is good maintenance to check for leakage and loose fasteners at each service interval

These maintenance periods are only for engines that are operated with fuel and lubricating oil to the specifications given in this handbook.

Schedules

The schedules which follow must be applied at the interval (kilometres, miles, hours or months) which occurs first.

Daily or every 8 hours

Check amount of coolant

Check amount of lubricating oil in the sump.

Check lubricating oil pressure (where a gauge is installed). In extreme dust conditions, clean dust bowl of air filter (where fitted).

Every 20000 km (12,500 miles), 500 hours or 6 months

Renew the lubricating oil.

Renew the lubricating oil filter canisters.

Clean the dust bowl of the air filter.

Check the drive belts.

Check for water in the fuel pre-filter (where fitted).

Clean the compressor air filter (if fitted).

Every 40000 km (25,000 miles) or 1,000 hours

Renew the fuel filter element(s).

Clean or renew the air filter element (if not indicated earlier).

Clean the engine breather.

Check and, if necessary, adjust the valve tip clearances.

Every 80000 km (50,000 miles) or 2,000 hours

Check the atomisers.

Clean the turbocharger impeller and casing.

Have the accessory equipment (compressor, starter motor, etc.) checked.

Every 160000 km (100,000 miles) or 4,000 hours

Renew the alternator and water pump drive belts.

Have the turbocharger checked.

Have the fuel injection pump checked and reset.

Post delivery service

The service procedures given below must be applied at the first 800/1600 km (500/1,000 miles), 25/50 hours of operation.

- 1 Run the engine until it is warm. Stop the engine and drain the lubricating oil from the sump. Fill the sump to the 'full' mark on the dipstick with clean new lubricating oil to an approved grade.
- 2 Renew the canisters of the lubricating oil filter.
- 3 Adjust the valve tip clearances (see page 25).
- 4 Check the tension of the alternator/water pump drive belts (see page 24).
- 5 Check that all fasteners are tight.
- **6** Run the engine and check for fuel, coolant and lubricating oil leakage. Check the lubricating oil supply to the rocker assemblies.
- 7 If necessary, get a person who has had the correct training to adjust the idle speed.
- 8 Check the lubricating oil level and add oil as necessary.

Instructions for maintenance

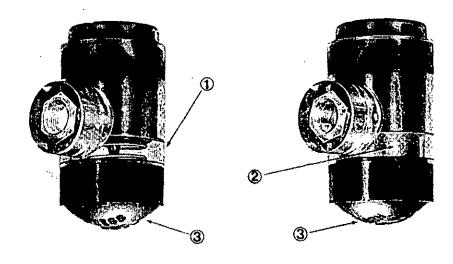
Air filter

Environment conditions have an important effect on the frequency at which the dry type air filter will need service.

Some air filters have a separate dust bowl that has to be cleaned at intervals. The amount of dust in the bowl will show if it has been removed at the correct time for the conditions of operation. Do not let the bowl get full of dust as this will reduce the life of the filter element.

Some air filters have automatic dust valves through which dust is discharged from the filter. The rubber dust valve must be kept clean and checked to ensure that the sides of the valves close together, but will come apart freely.

Where a restriction indicator is installed, it will give a positive indication that the air filter element needs service. This will prevent the early removal of the filter element which causes extra cost or late element removal which can cause loss of engine power.


The filter element must be cleaned or renewed according to the manufacturer's recommendations.

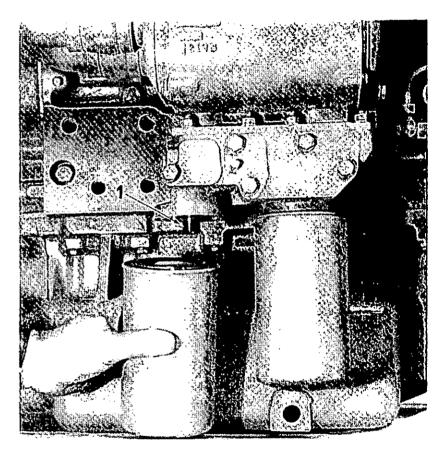
Restriction indicator

The restriction indicator for these engines must be the type that operates at a pressure difference of 457 mm (18 in) of water gauge. It is installed on the air filter outlet or between the air filter and the induction manifold.

When the red warning indicator is seen through the clear panel (see fig. 9) after the engine has stopped the air filter element must be removed for service.

After a clean element has been fitted, press the rubber bottom (3) of the restriction indicator to reset the red warning indicator.

- 1 Clear panel (no restriction)
- 2 Red panel (filter service needed)
- 3 Rubber bottom (press to reset)


Fig. 9 Restriction indicator

To renew the lubricating oil filter canisters

- 1 Put a tray under the filter to hold any lubricating oil drops.
- 2 Remove the filter canisters (see fig. 10) with a strap wrench or similar tool. Check that the adaptors (1, fig. 10) are secure in the filter head and discard the canisters. Both canisters must be changed at the same time.
- Clean the filter head.
- 4 Add clean engine lubricating oil to the new canisters. Give the oil time to fill the canister through the filter element.
- **5** Lubricate the top of the canister seals with clean engine lubricating oil.
- 6 Install the new canisters and tighten by hand only. Do not use a strap wrench.
- 7 After lubricating oil has been added to the sump, run the engine and check for leakage from the filter. Do not run the engine at high speeds until lubricating oil pressure is indicated on the gauge or the pressure warning light goes out.

Note: The canisters have a valve inside to ensure that lubricating oil does not drain from the filter and a special

tube is fitted, so ensure that the correct Perkins POWER-PART canister is used.

1 Screw adaptor

Fig. 10 Lubricating oil filter canister removal

To check the drive belts

Renew a belt if it is worn or damaged. Where double belts are fitted, they must be changed together.

With thumb pressure, press each belt down at the centre of its longest free length and check the movement (see fig. 11). The belt movement must be 10 mm (3/8 in).

To adjust the tension of the separate alternator drive belt or the common water pump and alternator drive belts:

- 1 Loosen the alternator mounting and adjustment link fasteners.
- 2 Change the alternator position to give the correct tension and tighten the fasteners.
- 3 Check the belt tension again to ensure that it is still correct.

To adjust the belt tension where a belt tensioner pulley is used:

- 1 Loosen the two setscrews that hold the pivot type pulley mounting bracket or loosen the nut at the rear of the pulley shaft of the screw adjustment type tensioner pulley.
- 2 Change the tensioner pulley position to give the correct tension. On pivot type pulley mountings move the complete assembly and then tighten the two setscrews. On the screw adjustment type turn the adjustment screw to get

the correct pulley position and then tighten the nut at the rear of the pulley shaft.

3 Check the belt tension again to ensure that it is still correct.

If a new belt is fitted, the belt tension must be checked again after the first 800 km (500 miles) or 25 hours of operation.

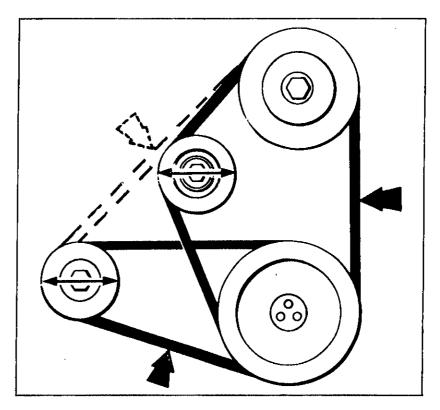


Fig. 11 Drive belt tension adjustment

To check the valve tip clearances

These are checked between the top of the valve stem or valve stem cap and the rocker lever with the engine cold. The correct clearance for the inlet valves is 0,25 mm (0.010 in) and for the exhaust valves it is 0,65 mm (0.025 in).

Left bank (see fig. 12).

- 1 Turn the crankshaft in the normal direction of rotation, until the inlet valve of No. 4 cylinder has just opened and the exhaust valve of the same cylinder has not fully closed. Check the clearances of No. 1 cylinder valves and adjust if necessary.
- 2 With No. 6 cylinder valves set as given above for No. 4 cylinder, check/adjust clearances of No. 7 cylinder valves.
- **3** With No. 2 cylinder valves set, check/adjust clearances of No. 5 cylinder valves.
- 4 With No. 8 cylinder valves set, check/adjust clearances of No. 3 cylinder valves.

Right bank

- **5** With No. 3 cylinder valves set, check/adjust clearances of No. 8 cylinder valves.
- 6 With No. 1 cylinder valves set, check/adjust clearances of No. 4 cylinder valves.

- 7 With No. 7 cylinder valves set, check/adjust clearances of No. 6 cylinder valves.
- 8 With No. 5 cylinder valves set, check/adjust clearances of No. 2 cylinder valves.

If necessary, the valve tip clearances can be checked/adjusted in the firing order 1, 8, 7, 5, 4, 3, 6, 2. To do this set the valves of the other cylinders (see fig. 12) to the position given in (1) above in the sequence 4, 3, 6, 2, 1, 8, 7, 5.

Note: Do not turn the crankshaft by the use of a spanner on one of the three setscrews that hold the crankshaft pulley. If a manual rotation ring is not fitted to the crankshaft pulley, fit two suitable studs or setscrews to the pulley and turn the crankshaft with a suitable lever.

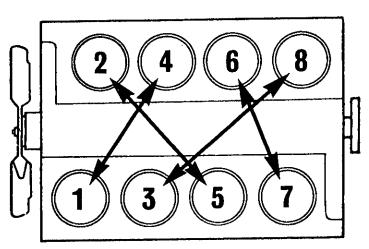


Fig. 12 Respective cylinders for valve tip clearance check.

To renew separate bowl type fuel filter elements

Both elements must be renewed at the same time.

- 1 Thoroughly clean the outside of the filter assembly. Where drain taps are fitted to the filter bowls, drain the fuel from the filter (see fig. 13).
- 2 Hold the filter bowls and release the setscrews that are fitted in the filter head above the centre of each filter element. Remove the filter elements and bowls (see fig. 14).
- 3 Clean the inside of the filter head and bowls.
- 4 Inspect the sealing rings and renew, where necessary.
- 5 Put the bowl on the bottom of each element and assemble squarely to the filter head so that the elements fit in the centre of the joints in the filter head. Hold in this position while the setscrews are engaged and tightened.
- 6 Remove air from the fuel system (see page 28).

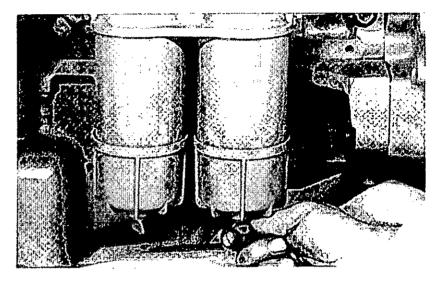


Fig. 13 Fuel filter drain

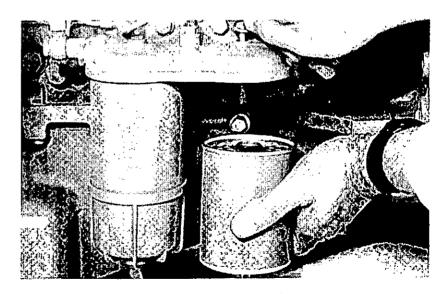


Fig. 14 Fuel filter element removal

To renew canister type fuel filter elements

Both elements (see fig. 15) must be renewed at the same time.

- 1 Thoroughly clean the outside of the filter assembly.
- 2 Use a strap wrench or similar tool to release the canisters from the filter head.
- 3 Ensure that the screw adaptors are secure in the filter head and then discard the used canisters.
- 4 Clean the inside of the filter head.
- 5 Lightly lubricate the top seal of the new canisters with clean fuel.
- 6 Assemble each canister to the filter head until the seal of the canister is in contact with the filter head and then tighten the canister another quarter of a turn by hand only. Do not use a strap wrench or similar tool.
- 7 Remove air from the fuel system (see page 30).

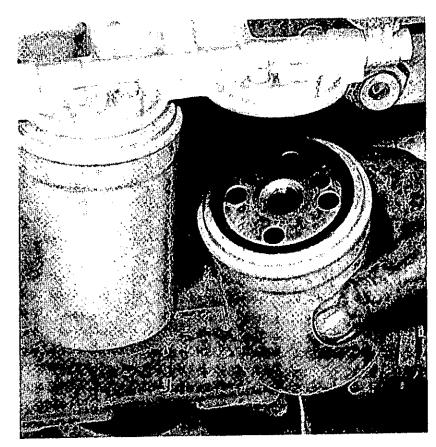


Fig. 15 Fuel filter canister removal

To remove air from the fuel system

If air gets into the fuel system, it must be removed before the engine can be started.

Air can get into the system if:

- The fuel tank is drained during normal operation.
- The low pressure fuel pipes are disconnected.
- Any part of the suction or low pressure fuel system leaks during engine operation.

Fuel system with rotary fuel injection pump

Remove air from the system as follows:

- 1 Loosen the vent plug on the top of the fuel filter by two or three turns (see fig. 16).
- 2 According to the application, either release the priming pump plunger from the fuel lift pump (see fig. 17) or release the plunger of the separate priming pump fitted above the fuel filter (see fig. 18). Operate the plunger until fuel, free from air, comes from the filter vent point. Tighten the filter vent plug.
- 3 Loosen the low pressure vent plug of the fuel injection pump by two or three turns. On earlier pumps this vent plug is on the top of the fuel return connection (1, fig. 19) and

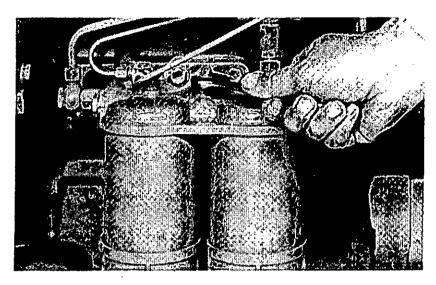


Fig. 16 Fuel filter vent plug

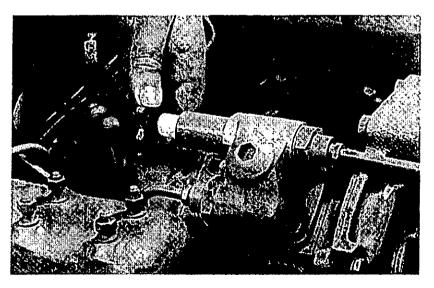


Fig. 17 Fuel lift pump priming plunger

on later pumps it is at the rear of the pump (2, fig. 19). Operate the priming pump plunger until fuel, free from air, comes from the vent point and tighten the vent plug.

- 4 If the fuel pipe to the Thermostart cold starting aid has been drained, loosen the union nut at the starting aid and operate the priming pump until fuel, free from air, comes from the connection. Tighten the union nut at the starting aid. Fasten the plunger to the fuel lift pump or the priming pump.
- 5 Remove the high pressure vent plug and washer from the top right side of the fuel injection pump (see fig. 20). Turn the engine by the starter motor until fuel, free from air, comes from the vent point. Fit the vent plug and washer.
- 6 Loosen the unions at the atomiser end of two of the high pressure pipes. Set the engine speed control to the fully open position and ensure that the stop control (where fitted) is in the 'run' position. Turn the engine by the starter motor until air, free from fuel, comes from both pipes. Tighten the two high pressure pipe connections and the engine is ready to start.

If the engine runs correctly for a short time and then stops or runs roughly, check for air in the fuel system. If there is air in the fuel system, there is probably a leakage in the suction or low pressure system.

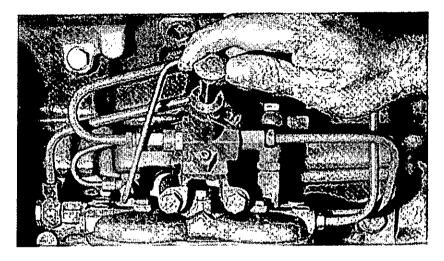
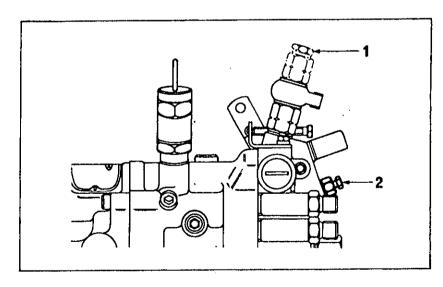



Fig. 18 Fuel priming pump

1 Early engines 2 Later engines

Fig. 19 Fuel injection pump low pressure vent plug

Fuel system with in line fuel injection pump

Remove air from the system as follows:

- 1 Loosen the vent screws on the top of the fuel filter (see fig. 21) by two or three turns.
- 2 According to the application, either release the priming pump plunger from the fuel lift pump on the side of the fuel injection pump or release the plunger of the separate priming pump fitted above the fuel filter (see fig. 18). Operate the plunger until fuel, free from air, comes from the filter vent points. Tighten the filter vent screws.
- 3 Loosen the banjo connection bolt for the fuel return pipe of the injection pump (see fig. 22). Operate the priming pump plunger until fuel, free from air, comes from the connection and tighten the banjo connection bolt. Do not remove the plug that is fitted in the end of the banjo connection bolt as this holds a pressure valve in position. If this plug is removed in error, ensure that the valve is fitted correctly with the flat plate toward the pump and the spring around the valve stem.
- 4 If the fuel pipe to the Thermostart cold starting aid has been drained, loosen the union nut at the starting aid and operate the priming pump until fuel, free from air, comes from the connection. Tighten the union nut at the starting aid.
- **5** Fasten the priming plunger to the fuel lift pump or priming pump and the engine is ready to start.

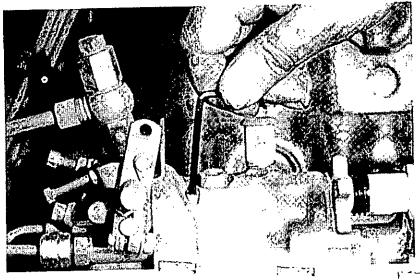


Fig. 20 Fuel injection pump high pressure vent screw

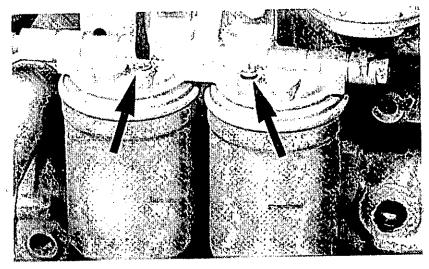


Fig. 21 Fuel filter vent screws

*

If the engine runs correctly for a short time and then stops or runs roughly, check for air in the fuel system. If there is air in the system, there is probably a leakage in the suction or low pressure system.

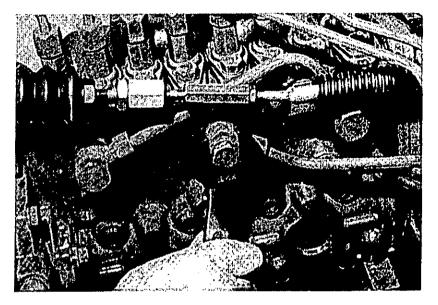


Fig. 22 Fuel injection pump vent point

Atomiser fault

An atomiser fault can be shown by an engine misfire.

To find which atomiser is at fault, run the engine at a fast idle speed and loosen and tighten the high pressure fuel pipe union at each atomiser. When the union nut of the atomiser at fault is loosened, it will have little or no effect on the engine speed. Do not let the fuel spray on to your skin.

To renew an atomiser

- 1 Remove the fuel leak off pipe.
- 2 Remove the high pressure pipe union nuts from the atomiser and fuel injection pump and release the pipe. Do not bend the pipe where necessary release the pipe clamp(s).

- 3 Remove the atomiser clamp and remove the atomiser and seat washer. Remove the dust seal and, if suitable for use, fit it to the new atomiser.
- 4 Put the new atomiser in position complete with a dust seal and a new seat washer, fit the atomiser clamp. Tighten the clamp nut to 47 Nm (35 lbf ft) 4,8 kgf m.
- 5 Fit the high pressure fuel pipe and tighten the nuts to 20 Nm (15 lbf ft) 2,1 kgf m. Where necessary tighten the pipe clamp(s).
- 6 Fit the leak off pipe.
- 7 Run the engine and check for fuel and air leakage.

To clean the engine breather

The breather assembly is fitted on the top of the cylinder block between the cylinders. The complete assembly can be removed from the engine or the top cover can be removed to get access to the gauzes.

- 1 Make suitable marks on the top cover and body for assembly purposes. Release the screw fitted in the side of the top cover and remove the cover (see fig. 23).
- 2 Remove the top gauze, shield and bottom gauze from the breather body.
- 3 On earlier engines, remove the funnel, On later engines the funnel is held in the body.
- 4 Wash the gauzes and component parts and dry them thoroughly.
- 5 Where necessary, put the funnel in position in the body.
- 6 Put the lower gauze in position around the inside of the body on the top of the funnel.
- 7 Press the shield into the body so that the top of the shield is at the same level as the top of the body.
- 8 Fit the top gauze inside the shield.
- 9 Check that no damage has occurred to the sealing ring fitted in the top cover. Fit the top cover with the location

marks aligned and tighten the small screw in the side of the cover.

10 Where necessary, fit the breather assembly to the cylinder block complete with a new joint. Fit the breather pipe.

When the engine operates or stands in dusty conditions, it is advised that the top gauze only is removed and cleaned at a shorter interval than that given in 'Preventive maintenance'.

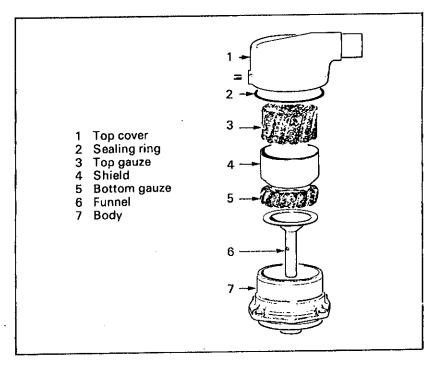


Fig. 23 Engine breather

Protection of an engine not in service

The recommendations given below are to ensure that damage is prevented when an engine is removed from service for an extended period. Use these procedures immediately the engine is removed from service. The instructions for the use of POWERPART products are given on the outside of each container.

- 1 Thoroughly clean the outside of the engine.
- 2 Where a preservative fuel is to be used, drain the fuel system and fill with the preservative fuel. POWERPART Lay-Up 1 can be added to the normal fuel to change it to a preservative fuel. If preservative fuel is not used, the system can be kept charged with normal fuel but this will have to be drained and discarded at the end of the storage period together with the fuel filter.
- 3 Run the engine until it is warm. Correct any fuel, lubricating oil or air leakage. Stop the engine and drain the lubricating oil sump.
- 4 Renew the lubricating oil filter canisters.
- 5 Fill the sump to the full mark on the dipstick with clean new lubricating oil or with a correct preservative fluid. POWERPART Lay-Up 2 can be added to the lubricating oil to give protection against corrosion during the period in storage. If a preservative fluid is used, this must be drained and normal lubricating oil used when the engine is returned to service.
- 6 Drain the cooling system, see page 19. To give pro-

tection against corrosion, it is better to fill the cooling system with a coolant that has a corrosion inhibitor, see 'Engine coolant' on page 18. If frost protection is needed, use an antifreeze mixture. If no frost protection is needed, use water with an approved corrosion inhibitor mixture.

- 7 Run the engine for a short period to send the lubricating oil and coolant around the engine.
- 8 Clean the engine breather gauzes and seal the end of the breather pipe.
- 9 Remove the atomisers and spray POWERPART Lay-Up 2 into each cylinder bore. If this is not available, clean engine lubricating oil will give a degree of protection. Spray into the cylinder bores 140 ml (1/4 pint) of lubricating oil divided evenly between the eight cylinders.
- 10 Slowly turn the crankshaft one revolution and then install the atomisers complete with new seat washers.
- 11 Remove the air filter and any pipe installed between the air filter and induction manifold. Spray POWERPART Lay-Up 2 into the induction manifolds. Seal the manifolds with waterproof tape.
- 12 Remove the exhaust pipes. Spray POWERPART Lay-Up 2 into the exhaust manifolds. Seal the manifolds with waterproof tape.
- 13 Remove the rocker covers. Spray POWERPART Lay-Up 2 around the rocker shaft assemblies. Fit the rocker covers.

14 Disconnect the battery and put it into safe storage in a fully charged condition. Before the battery is put into storage, give the battery terminals a protection against corrosion. POWERPART Lay-Up 3 can be used on the terminals.

15 Seal the vent pipe of the fuel tank or the fuel filler cap with waterproof tape.

16 Remove the drive belts and put them into storage.

17 To prevent corrosion, spray the engine with POWER-PART Lay-Up 3. Do not spray inside the alternator cooling fan area.

Note: Before the engine is started after a period in storage, operate the starter motor with the engine stop control in the off position until oil pressure shows on the oil pressure gauge or the oil warning light goes out. If a solenoid stop control is used, this will have to be disconnected for this operation. If an in line fuel injection pump is fitted and the engine has not been run for a month, lubricating oil must be added to the pump (see page 12).

If the engine protection is done correctly according to the above recommendations, no corrosion damage will normally occur. Perkins Engines Ltd. are not responsible for any damage that occurs in relation to a service storage period.

Fault diagnosis

Problem	Possible causes		
Starter motor turns engine too slowly	1, 2, 3, 4		
Will not start	5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 31, 32, 33		
Difficult to start	5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 29, 31, 32, 33		
Not enough power	8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 61, 63		
Misfire	8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 25, 26, 28, 29, 30, 32		
High fuel consumption	11, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 63		
Black exhaust	11, 13, 14, 16, 18, 19, 20, 22, 24, 25, 27, 28, 29, 31, 32, 33, 61, 63		
Blue/white exhaust	4, 16, 18, 19, 20, 25, 27, 31, 33, 34, 35, 45, 56, 62		
Low lubricating oil pressure	4, 36, 37, 38, 39, 40, 42, 43, 44, 58		
Engine knocks	9, 14, 16, 18, 19, 22, 26, 28, 29, 31, 33, 35, 36, 45, 46, 59		
Runs erratically	7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 23, 26, 28, 29, 30, 33, 35, 45, 59		
Vibration	13, 14, 20, 23, 25, 26, 29, 30, 33, 45, 47, 48, 49		
High lubricating oil pressure	4, 38, 41		
Engine temperature too high	11, 13, 14, 16, 18, 19, 24, 25, 45, 47, 50, 51, 52, 53, 54, 57		
Crankcase pressure	25, 31, 33, 34, 45, 55, 60		
Bad compression	11, 19, 25, 28, 29, 31, 32, 33, 34, 46, 59		
Starts and stops	10, 11, 12		

Code list of possible causes

- 1 Battery capacity low.
- 2 Bad electrical connections.
- 3 Fault in starter motor.
- 4 Wrong grade of lubricating oil.
- 5 Low engine speed from starter motor.
- 6 Fuel tank empty
- 7 Stop control fault.
- 8 Restriction in fuel pipe.
- 9 Fault in fuel lift pump.
- 10 Dirty fuel filter element.
- 11 Restriction in air filter or induction system.
- 12 Air in fuel system.
- 13 Fault in fuel injection pump.
- 14 Fault in atomisers or not correct type.
- 15 Cold start equipment not used correctly.
- 16 Fault in cold start equipment.
- 17 Broken fuel injection pump drive.
- 18 Fuel injection pump timing not correct.
- 19 Valve timing not correct.
- 20 Bad compression.
- 21 Restriction in fuel tank vent.
- 22 Type or grade of fuel not correct.
- 23 Restriction of engine speed control movement.
- 24 Restriction in exhaust pipe.
- 25 Cylinder head gasket leaks.
- 26 Engine temperature too high.
- 27 Engine temperature too low.
- 28 Valve tip clearances not correct.
- 29 Valves not free.
- 30 Wrong high pressure pipes.
- 31 Worn cylinder bores.
- 32 Valves and seats do not seal correctly.

- 33 Piston rings not free or are worn or broken.
- 34 Valve stems and/or guides worn.
- 35 Wet type air cleaner too full or wrong oil used.
- 36 Crankshaft bearings wear or damage.
- 37 Not enough lubricating oil in the sump.
- 38 Gauge not correct.
- 39 Lubricating oil pump worn.
- 40 Relief valve not free to close.
- 41 Relief valve not free to open.
- 42 Relief valve spring broken.
- 43 Fault in suction pipe of lubricating oil pump.
- 44 Dirty lubricating oil filter element.
- 45 Piston damage.
- 46 Piston height not correct.
- 47 Fan damage.
- 48 Fault in engine mounting (housing).
- 49 Flywheel housing or flywheel not aligned correctly.
- 50 Fault in thermostat or wrong type.
- 51 Restriction in coolant passages.
- 52 Water pump drive belt loose.
- 53 Restriction in radiator.
- 54 Fault in water pump.
- 55 Restriction in breather pipe.
- $\underline{56}$ Damage to valve stem oil seals (where used).
- 57 Not enough coolant in system.
- 58 Restriction in sump strainer.
- 59 Valve spring broken.
- 60 Fault in exhauster or vacuum pipe leakage.
- 61 Turbocharger impeller damage, or dirty impeller.
- 62 Turbocharger lubricating oil seal leaks.
- 63 Induction system leaks (turbocharged engines).

POWERPART consumable products

To give assistance in the correct operation, service and maintenance of your engine and machine, Perkins Engines Ltd. have made available the products shown below.

The instructions for the use of each product are given on the outside of each container.

These products are available from your Perkins distributor.

POWERPART Antifreeze

Gives corrosion protection and also a more efficient coolant in hot conditions See page 18.

POWERPART Lay-Up 1

A diesel fuel additive for protection against corrosion See page 34.

POWERPART Lay-Up 2

Gives inside protection to the engine and other closed systems. See page 34.

POWERPART Lay-Up 3

Gives outside protection to any metal parts. See page 35.

POWERPART De-Icer

To remove frost.

POWERPART Silent Spray

Silicone lubrication to lubricate and prevent noise from hinges, slide doors, etc.

POWERPART Damp Displacer

To make damp electrical equipment dry and to give future protection.

POWERPART Hylomar

Universal sealing compound to seal joints.

POWERPART Hylosil

Silicone rubber sealant to prevent leakage.

POWERPART Impact Adhesive

To keep joints in position during installation and other general attachment purposes.

POWERPART Solvent

To thoroughly clean metal faces before assembly.

POWERPART Locking Agent

Used to securely install fasteners, sleeves, etc.

Examples of service assistance

Service

If any problems occur with your engine or the components fitted to it, your Perkins distributor can make the necessary repairs and will ensure that only the correct parts are fitted and that the work is done correctly.

Certain components can be supplied by your Perkins distributor through the Perkins Power Exchange system. These will enable you to reduce the cost of some repairs.

Extended warranty

The engine warranty period can be extended to two years. For details get in contact with your nearest Perkins distributor.

Service literature

Workshop manuals and other service publications are available from your Perkins distributor at a nominal cost.

Training

Local training on correct engine operation, overhaul and service is available at some Perkins distributors. If special training is needed, your Perkins distributor can give details on how to get this at the Product Education Department, Peterborough, or other main centres.

Parts illustrations

The illustrations which follow are a guide for your assistance in the purchase of Perkins service parts. A list of the reference numbers and part descriptions is given on pages 51 and 52.

There can be differences in the shape of similar components in different engine applications.

Many years of experience and development have ensured that Perkins parts are of the highest quality and standard. Use correct Perkins parts which are available from all Perkins distributors.

To ensure you get the correct parts when you order, give the complete engine number, the machine or vehicle description, name and serial number.

Note: Perkins Engines Ltd. can not supply to an operator direct. To purchase the correct Perkins parts, give an order to your Perkins distributor.

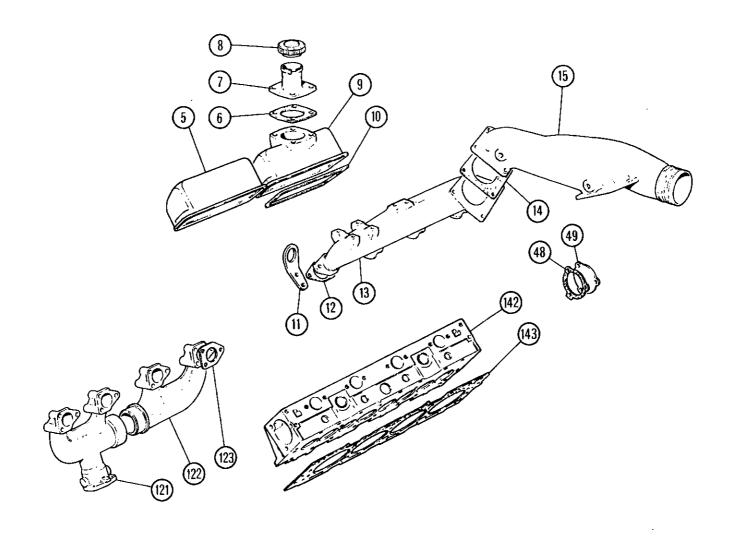


Fig. 24 Cylinder head arrangement

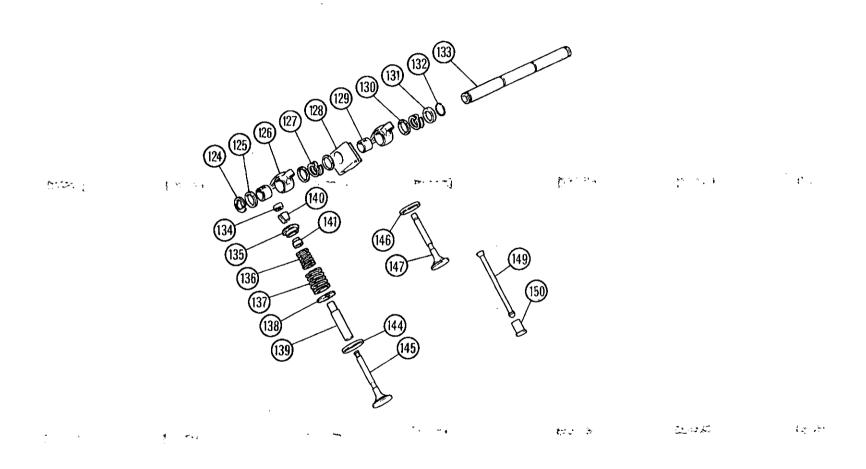


Fig. 25 Valves and rocker assembly

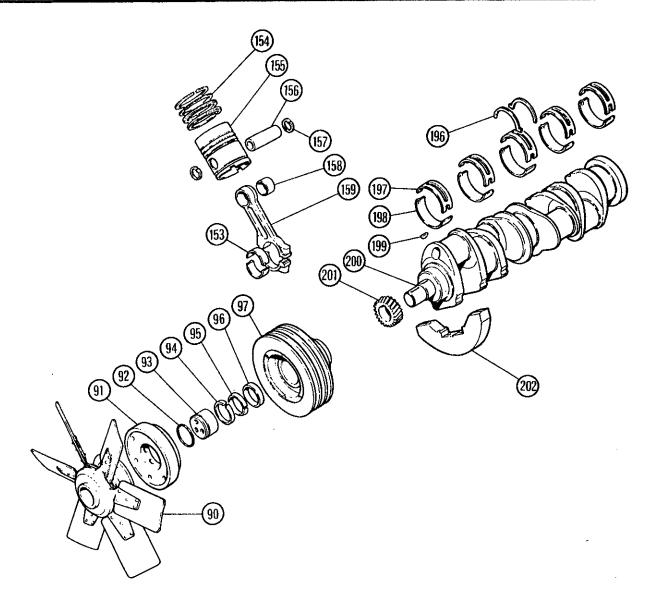


Fig. 26 Crankshaft and piston assemblies

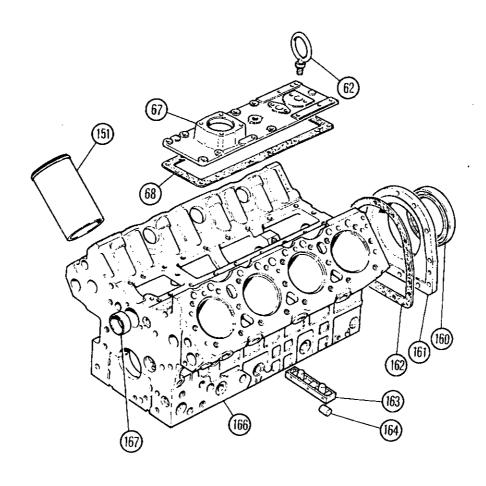


Fig. 27 Cylinder block assembly

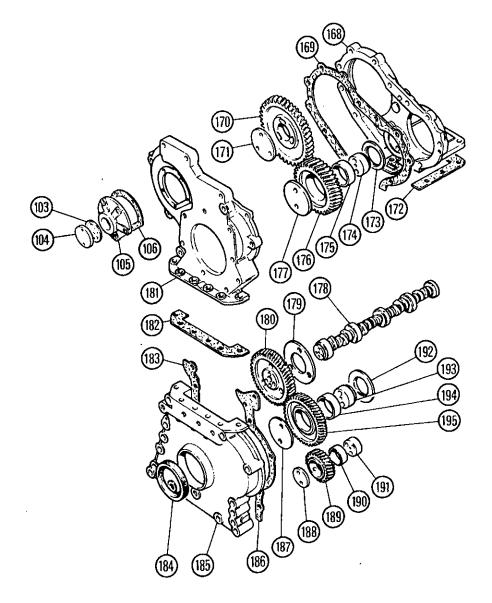


Fig. 28 Timing case and drive arrangement

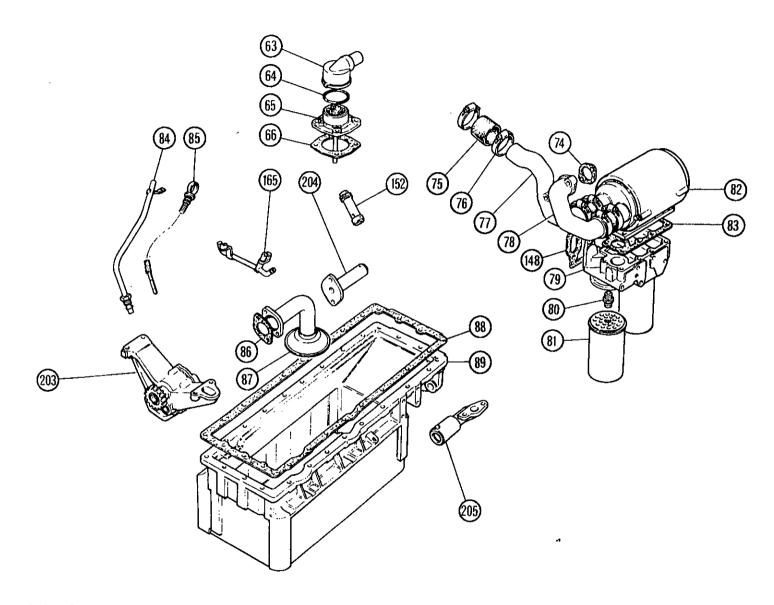


Fig. 29 Lubrication system components

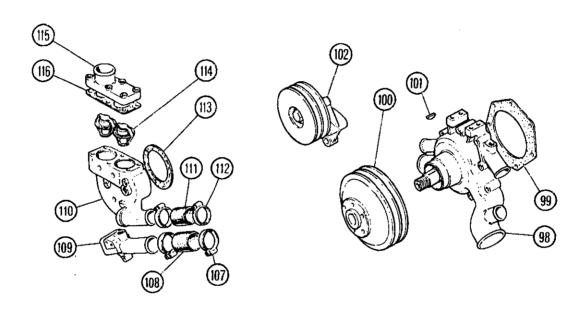


Fig. 30 Cooling system components

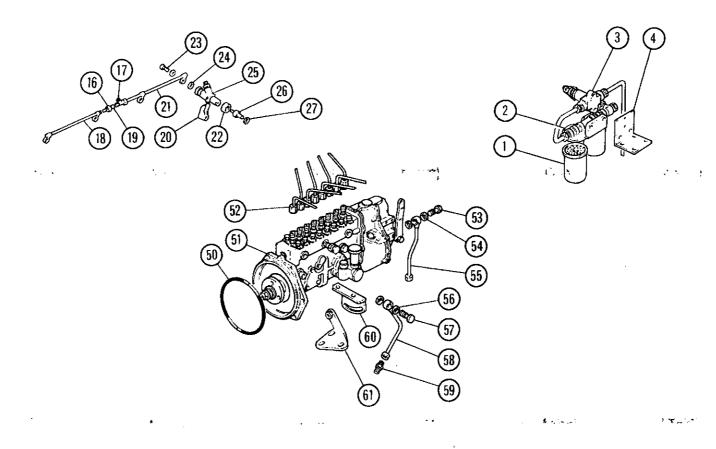
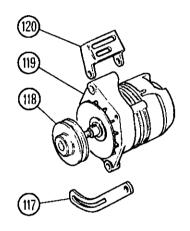



Fig. 31 Fuel system components (in line pump)

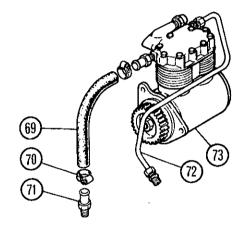


Fig. 32 Alternator and brackets

Fig. 33 Compressor

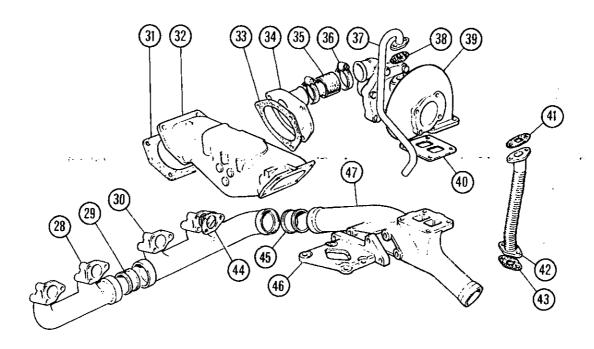


Fig. 34 Turbocharger system

Part descriptions

To be used with the illustrations given on pages 41 to 50

1 Fuel filter element	29 Connection
2 Fuel filter head	30 Exhaust manifold
3 Fuel priming pump	31 Joint
4 Bracket	32 Crossover pipe
5 Rocker cover	33 Joint
6 Joint	34 Adaptor
7 Lubricating oil filler	35 Hose
8 Filler cap	36 Clip
9 Rocker cover with	37 Pipe
filler	38 Joint
10 Joint	39 Turbocharger
11 Engine lift bracket	40 Joint
12 Joint	41 Joint
13 Induction manifold	42 Pipe
14 Joint	43 Joint
15 Crossover pipe	44 Joint
16 Nut	45 Connection
17 Connection	46 Bracket
18 Leak off pipe	47 Crossover pipe
19 Olive	48 Joint
20 Clamp	49 Plate
21 Leak off pipe	50 'O' Ring
22 Dust seal	51 Fuel injection pump
23 Banjo connection bolt	52 Fuel injection pipe
24 Sealing washer	53 Banjo connection b
25 Atomiser body	54 Sealing washer
26 Atomiser nozzle	55 Pipe
assembly	56 Sealing washer
27 Sealing washer	57 Banjo connection b
28 Exhaust manifold	58 Pipe

on pages 41 to 50.
connection Exhaust manifold Joint Crossover pipe Joint
Sealing washer Banjo connection bolt Pipe
ipe

EQ Heign	c
59 Union	c
60 Bracket	Č
61 Bracket	
62 Engine lift eye	Č
63 Breather cover	
64 Sealing ring	6
65 Breather body	
66 Joint	9
67 Cover	
68 Joint	10
69 Hose	10
70 Clip	10
71 Connection	10
72 Pipe	10
73 Compressor	10
74 Joint	10
75 Hose	10
76 Clip	10
77 Pipe	10
78 Pipe	11
79 Lubricating oil filter	11
head	11
80 Adaptor	11
81 Lubricating oil filter	11
element	11
82 Lubricating oil cooler	11
83 Joint	11
84 Dipstick tube	11
85 Dipstick	11
86 Joint	12
87 Lubricating oil strainer88 Joint	12
88 Joint	12
89 Lubricating oil sump	12
90 Fan	12

91	Extension
92	'O' ring
93	Thrust block
	Outer tapered ring
95	Inner tapered ring
96	Spacer
97	Crankshaft pulley
98	Water pump
99	Joint
100	Water pump pulley
101	Key
102	Tensioner pulley
103	Joint
104	Plate
105	Cover
106	Joint
107	Clip
108	Hose
109	Connection
110	Housing
111	Hose
112	Clip
113	Joint
114	Thermostat
115	Cover
116	Joint
	Adjustment link
118	Alternator pulley
	Alternator
120	Bracket
121	Exhaust manifold
122	Exhaust manifold
123	Joint
124	Circlip

125 Washer	147 Exhaust valve	170 Fuel injection pump	190 Bush
126 Rocker lever	148 Joint	gear	191 Hub
127 Double spring washer	149 Push rod	171 Plate	192 Thrust washer
128 Bracket	150 Tappet	172 Joint	193 Hub
129 Bush	151 Cylinder liner	173 Thrust washer	194 Bush
130 Shim washer	152 Cooling jet valve	174 Hub	195 Idler gear
131 Collar	153 Bearing	175 Bush	196 Thrust washer
132 Circlip	154 Piston rings	176 Idler gear	197 Upper half main
133 Rocker shaft	155 Piston	177 Plate	bearing
134 Valve stem cap	156 Gudgeon pin	178 Camshaft	198 Lower half main
135 Valve spring cap	157 Circlip	179 Thrust plate	bearing
136 Inner valve spring	158 Bush	180 Camshaft gear	199 Key
137 Outer valve spring	159 Connecting rod	181 Upper half timing	200 Crankshaft
138 Valve spring seat	160 Seal	case	201 Crankshaft gear
139 Valve guide	161 Housing	182 Joint	202 Balance weight
140 Cotters	_162 Joint	183 Joint	203 Lubricating oil pump
141 Seal	163 Bridge piece	184 Seal	204 Dump valve
142 Cylinder head	164 Seal	185 Lower half timing	205 Relief valve
143 Gasket	165 Cooling jet	case	
144 Inlet valve seat insert	166 Cylinder block	186 Joint	
145 Inlet valve	167 Bush	187 Plate	
146 Exhaust valve seat	168 Housing	188 Plate	
insert	169 Joint	189 Idler gear	

Latest information

Introduction

The purpose of this page is to enable important information to be added to this handbook after publication.

for the second s

CALIFORNIA Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

Asia

Perkins Engines (Asia Pacific) Pte Ltd 7 Tractor Road Singapore 627968 Telephone +65 6828 7469 Fax +65 6828 7414

Europe, Middle East and Africa

Perkins Engines Company Limited Peterborough PE1 5NA United Kingdom Telephone +44 (0)1733 583000 Fax +44 (0)1733 582240

North America

Perkins Engines Inc N4 AC 6160 PO Box 610 Mossville, IL 61552-0610, USA 1-888-PERK-ENG Telephone +1 309 578 7364 Fax +1 309 578 7329

Latin America

Perkins Motores do Brasil Ltda Rua Alexandre Dumas, 1711 Ed. Birman 11, 9° andar Chácara Santo Antonio São Paulo / SP - Brasil Cep: 04717-004 Telephone +55 11 2109 2038 Fax +55 11 2109 2089

www.perkins.com