## ${ }^{2}$ Perkins

## Mode d'Emploi

Série 4000



This document has been printed from SPI². Not for Resale

## AVERTISSEMENT <br> 4 <br> IL EST RECOMMANDE DE LIRE ET DE COMPRENDRE TOUTES LES CONSIGNES DE SECURITE ET AVERTISSEMENTS FIGURANT DANS CE MANUEL. <br> TOUTE PROCEDURE D'UTILISATION OU D'ENTRETIEN INCORRECTE POURRAIT ENTRAINER UN ACCIDENT GRAVE OU UNE DETERIORATION DU MATERIEL ET CAUSER DES BLESSURES OU LA MORT. <br> LE NON RESPECT DE CES INSTRUCTIONS ET DE CELLES FIGURANT DANS LE MANUEL D'INSTALLATION TSL4200 POURRAIT ANNULER LA GARANTIE OFFERTE AVEC LE MOTEUR. <br> AVANT TOUTE INTERVENTION D'ENTRETIEN, EN PARTICULIER SUR LES GROUPES ELECTROGENES A DEMARRAGE AUTOMATIQUE, PRENDRE TOUTES LES PRECAUTIONS NECESSAIRES POUR QUE LE MOTEUR NE PUISSE EN AUCUN CAS DEMARRER.

Le but de ce manuel est de permettre à l'opérateur d'effectuer les opérations d'entretien de routine du moteur.
Avant d'entreprendre toute intervention sur le moteur, il est iecommandé de lire complètement le Manuel et de le comprendre dans sa totalité.
Les informations contenues dans le Manuel sont celles disponibles au moment de l'édition. En raison de la politique de développement et d'amélioration continus de Perkins Engines (Stafford) Limited, ces informations peuvent changer à tout moment sans préavis. L'utilisateur doit par conséquent s'assurer, avant toute intervention sur le moteur, de posséder les informations les plus récentes sur ce moteur.
Si elles sont correctement appliquées, les instructions contenues dans ce manuel permettent d'obtenir un fonctionnement sûr de l'équipement.
Il est respectueusement rappelé aux utilisateurs que la responsabilité leur incombe d'employer du personnel qualifié pour faire fonctionner, entretenir et réparer cet équipement, dans lintérêt de la sécurité.
Certaines opérations de révision ne sont réalisables qu'avec des outils spéciaux, et it est fortement conseillé aux mécaniciens non équipés pour les réparations importantes, de consulter leur concessionnaire Perkins.
Lorsque personne ne travaille sur le moteur, veiller à ce que tous les couvercles, plaques d’obturation, portes, etc., soient remontés sur les ouvertures pour empêcher la pénétration de corps étrangers, etc.
Ne pas oublier de préciser le type et le numéro de série de votre moteur dans toutes vos demandes. Ceci nous aidera à vous aider. Le type et le numéro de série figurent sur une plaque fixée sur le bloc-cylindres.
En cas de doute concernant l'installation, l'utilisation ou les applications du moteur, se reporter au Manuel d'Installation. Pour toute information supplémentaire, contacter le Service des Applications de Perkins Engines (Stafford) Ltd.
La périodicité de remplacement de l'huile peut être modifiée en fonction de l'expérience d'utilisation, avec l'accord de Perkins Engines (Stafford) Limited, et suivant les résultats des analyses d'huile effectuées à intervalles réguliers.
Veuillez noter que ce manuel de la Série 4000 s'applique également aux moteurs SE distribués par l'usine à partir du $1^{\text {er }}$ mars 1996.
Un tableau d'équivalence des désignations des moteurs figure à la page 2.

## SOCIETES PERKINS

## Perkins Group of Companies

Perkins Engines (Peterborough) Ltd.
Frank Perkins Way, Eastfield,
Peterborough, PE1 5NA, Angleterre.
Tel.: (01733) 67474
Télex: 32501 PERKEN G
Fax: (01733) 583000
Perkins Engines (Shrewsbury) Ltd. Lancaster Road, Shrewsbury, SY1 3NX, Angleterre.
Tel.: (01743) 212000
Telex: 35171/2 PESL G
Fax: (01743) 212700
Perkins Engines (Stafford) Ltd.
Tixall Road, Stafford, ST16 3UB,
Angleterre.
Tél.: (01785) 223141
Télex: 36156 PERKEN G
Fax: (01785) 215110
PerkIns Powerpart Distribution Centre Frank Perkins Way,
Northbank Industrial Park, Itram, Manchester, M44 5PP, Angleterre. Tét: (0161) 7765000
Bureau d'Aide Spéciflcations
Té.:: (0161) 7765151
Fax: (0161) 7765200
Bureau d'Alde Spécifications
Tél.: (0161) 7765100
Télex: 32501 PERKEN G

Perkins International - North America
12025 Tech Center Drive,
Livonla, Michigan 48150,
U.S.A.

Tél.: 3132665427
Fax: 3132662700
Perkins Englnes Latin America Inc 999 Ponce de Leon Boulevard, Suite 710, Coral Gables, Florida 33134, U.S.A.
Tél.: (305) 4427413
Télex: 32501 PERKEN $G$
Fax: (305) 4427419
Perkins EngInes Australla Pty Ltd
Suite 2, 364 Main Street, Mornington 3931, Victoria, Australle.
Tél.: (059) 751877
Telex: 30816
Fax: (059) 751305
Motori Perkins SpA
Vla Socrate. 8,22070 Casnate
Con Bemate (Como), Italie.
Tel.: 031564625 / 031564633
Télex: 380658 PERKITI
Fax: 031249092 / 031564145
Perkins Motoren GmbH
D-63801 Kleinostheim, Saalackerstrasse 4, Allemagne.
Tél.: (49) (6027) 5010
Fax: (49) (6027) 501130

## Moteurs Perkins SA

Parc de Reflets - Paris Nord II,
165 Avenue du Bois de la Pie, BP 40064,
95913 Roissy CDG Cedex. France
Tél.: 0033149907172
Fax: 0033149907190
Perkins International Ltd.
Varity Asia/Pacific
Sulte 3301, Convention Plaza,
1 Harbour Road, Wanchai,
Hong Kong.
Tél.: 85225881883
Fax: 85228272311
Perkins Engines (Far East) Pte Ltd. 39 Tuas Avenue 13,
Singapour 638999.
Tét.: (65) 8611318
Fax: (65) 8616252

Outre les sociétés indiquées ci-dessus, vous trouverez des distributeurs Perkins dans la plupart des pays. Contactez Perkins Engines (Peterborough) Limited ou l'une des sociétés indiquées ci-dessus, qui vous fourniront publication $n^{\circ}$ 1407/4/97 des Manuels des distributeurs.

| PERKINS ENGINES (STAFFORD) <br> DESIGNATION DES MOTEURS <br> SERIE 4000 ET SERIE SE <br> EQUIVALENCE DES TERMES |  |
| :---: | :---: |
| SERIE 4000 | SERIE SE |
| $4012 T E S I$ | 12SETCWG |
| 4016TESI | 16SETCWG |

Page
INTRODUCTION ..... 1-2
SOMMAIRE ..... 3
BREVE DESCRIPTION DES MOTEURS A GAZ 4012/16 ..... 4
PHOTOGRAPHIES/CONSIGNES DE SECURITE ..... EivCARTS
INFORMATIONS GENERALES ..... 5
CARACTERISTIQUES DES MOTEURS ..... 7"-10
REGLAGE DES COUPLES DE SERRAGE ..... 11-13
HUILE DE GRAISSAGE ..... 14-16
INHIBITEUR DE CORROSION LIQUIDE DE REFROIDISSEMENT, ANTIGEL ..... 17
SPECIFICATION DU GAZ ..... 18-19
INSTRUCTIONS D'UTILISATION ..... 20-21
PREPARATION POUR LE DEMARRAGE INITIAL ..... 20
AMORCAGE DU TURBOCOMPRESSEUR ..... 20
REMPLISSAGE DU CIRCUIT DE REFROIDISSEMENT ..... 21
BATTERIES ..... 21
INSTRUMENTS ..... 22-24
THERMOMETRE D'ECHAPPEMENT (EN OPTION) ..... 24
DEMARRAGE INITIAL DU MOTEUR ..... 25-26
PROCEDURE NORMALE DE DEMARRAGE (AUTOMATIQUE) ..... 27
ARRET DU MOTEUR ..... 27
PROCEDURES D'ENTRETIEN ..... 28-41
PERIODES DE REVISION ET LISTE DE CONTROLE ..... 42-44
TABLEAU DE RECHERCHE DES PANNES ..... 45
SCHEMAS DE CABLAGE

- CIRCUIT DE DEMARRAGE AVEC DEMARREUR CAV ET INTERRUPTEURS ..... 46
DE PROTECTION
- CIRCUIT DE DEMARRAGE AVEC DEMARREURS BUTEC ET TABLEAU ..... 47
DE COMMANDE EN OPTION
- ALLUMAGE DE LA GAMME DE MOTEURS A GAZ 4012 ANCIENS ET ..... 48
REGULATEUR ELECTRONIQUE HEINZMANN
- ALLUMAGE DE LA GAMME DE MOTEURS A GAZ 4012 ACTUELS ET ..... 49
REGULATEUR ELECTRONIQUE HEINZMANN
- PROTECTION STANDARD (MINNOX) 4012/16SI ET EQUIPEMENT DE ..... 50
PROTECTION CONFORME AU BRITISH GAS COUNCIL EN OPTION
- ALLUMAGE DE LA GAMME DE MOTEURS A GAZ 4016 ANCIENS ET ..... 51REGULATEUR ELECTRONIQUE HEINZMANN
- ALLUMAGE DE LA GAMME DE MOTEURS A GAZ 4016 ACTUELS ET ..... 52REGULATEUR ELECTRONIQUE HEINZMANNCIRCUIT D'HUILE DE GRAISSAGE DES MOTEURS 4012/16TP315
SCHEMA DE CIRCULATION D'EAU DOUCE ET BRUTE DES MOTEURS 4012/16TESI ..... TP381
(REFROIDIS PAR ECHANGEUR DE CHALEUR)
SCHEMA DE CIRCULATION D'EAU DOUCE ET BRUTE DES MOTEURS 4012TESI ..... TP384
(REFROIDIS PAR RADIATEUR)
SCHEMA DE CIRCULATION DU GAZ ET D'ALLUMAGE DES MOTEURS 4012/16TESI ..... TP351

4012TESI
(MINNOX)

4012TESI (MINNOX) 200 L.C.

4012TESI (MINNOX) 140 L.C.

4012TESI
(MINNOX)
140 H.C.
4016TESI (MINNOX) 200 L.C.

4016TESI (MINNOX) 140 L.C.

4016TESI (MINNOX) 140 H.C.

4016TESI (MINNOX) 90 H.C.

Moteur à gaz 12 cylindres en V, 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre, faibles niveaux d'émission de NOx, taux de compression 9,5:1.

Moteur à gaz 12 cylindres en V, 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx inférieures à $200 \mathrm{~g} / \mathrm{GJ}$, taux de compression 9,5:1.

Moteur à gaz 12 cylindres en $\mathrm{V}, 4$ temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx inférieures à $140 \mathrm{~g} / \mathrm{GJ}$, taux de compression 9,5:1.

Moteur à gaz 12 cylindres en $V$, 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx inféréeures à $140 \mathrm{~g} / \mathrm{GJ}$, taux de compression 11,5:1.

Moteur à gaz 16 cylindres en $V, 4$ temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx de $200 \mathrm{~g} / \mathrm{GJ}$ ou inférieures, taux de compression 9,5:1.

Moteur à gaz 16 cylindres en V , 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx de $140 \mathrm{~g} / \mathrm{GJ}$ ou inférieures, taux de compression 9,5:1.

Moteur à gaz 16 cylindres en V , 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx de $140 \mathrm{~g} / \mathrm{GJ}$ ou inferieures, taux de compression 11,5:1.

Moteur à gaz 16 cylindres en V , 4 temps, turbocompressé, refroidi à l'eau, refroidisseur d'air d'admission refroidi par eau avec pompe à eau et circuit de refroidissement séparé, mélange pauvre. Emissions de NOx de $90 \mathrm{~g} / \mathrm{GJ}$ ou inférieures, taux de compression 11,5:1.

Pour garantir un fonctionnement sûr et fiable du moteur, il est essentiel de suivre scrupuleusement les procédures recommandées dans le manuel et, si nécessaire, d'utiliser les outils spéciaux. Toute procédure d'utilisation ou d'entretien incorrecte est dangereuse et peut causer des blessures ou la mort.
Avant chaque utilisation, l'utilisateur doit contrôler que toutes les précautions de sécurité de base ont été prises pour éviter tout risque d'accident.
Toutes les consignes de sécurité et les avertissements doivent être ius et compris avant d'utiliser ou d'entretenir le moteur.
Chaque fois qu'il faut faire fonctionner le moteur ou effectuer des interventions d'entretien, suivre scrupuleusement les consignes de sécurité classées ci-dessous dans différentes catégories avec les symboles correspondants:

| S'assurer que les protections sont installées | (a) sur les pièces tournantes exposées <br> (b) sur les surfaces chaudes exposées <br> (c) sur les prises d'air exposées <br> (d) sur les courroies exposées <br> (e) sur les bornes électriques sous tension, à haute et basse tension |
| :---: | :---: |
| S'assurer que les équipements de protection: pour les mains, les oreilles, les yeux, les pieds, etc. <br> (5) | (a) (1) sont portés lors de l'utilisation d'inhibiteurs <br> (b) (1) sont portés lors de l'utilisation d'antigel <br> (c) (1) sont portés lors de la dépose du bouchon de pression du radiateur ou du bouchon de remplissage de l'échangeur de chaleur <br> (d) (5) sont portés pour travailler sur ou sous le moteur <br> (e) (3) sont portés lors de l'utilisation d'air comprimé <br> (f) (1) sont portés lors du remplacement de l'huile de graissage/filtre <br> (g) (2) sont portés pour travailler dans une chambre des moteurs fermée <br> (h) (1) sont portés pour changer l'électrolyte dans la batterie <br> (i) (4) sont toujours portés pour travailler sur le moteur |
| Ne pas fumer et éviter la présence de flammes nues | (a) lors du contrôle de l'électrolyte de la batterie <br> (b) en travaillant dans la salle des moteurs <br> (c) lors du fonctionnement ou de l'entretien du moteur |
| Tuyaux de combustible/huile | (a) contrôler les fuites <br> (b) contrôler l'huile renversée (nettoyer) <br> (c) toujours utiliser une crème protectrice pour les mains |
| Tuyaux de gaz/air | (a) contrôler les fuites de mélange gaz/air <br> (b) ne jamais faire tourner le moteur avec un disque de pression cassé <br> (c) contrôler que la ligne de gaz et les soupapes répondent aux normes de sécurité locales <br> (d) contrôler que la pression de la ligne de gaz est correcte |
| Equipements d'interruption | (a) nécessaires pour arrêter le moteur en cas de survitesse, température de l'eau élevée ou basse pression de l'huile <br> (b) nécessaires pour les capteurs de chaleur et les capteurs de méthane et de fumées (s'il y a lieu) <br> (c) contrôler que le système de protection fonctionne correctement <br> (d) toujours être capable d'arrêter le moteur (même à distance) |
| Démarrage | (a) débrancher la batterie ou tout autre dispositif de démarrage en cas de démarrage accidentel lors du travail sur le moteur <br> (b) ne jamais mettre le moteur en marche avec la timonerie de direction débranchée <br> (c) ne pas garder le levier d'arrêt en position de marche lors du démarrage du moteur <br> (d) toujours garder le levier d'arrêt en position d'arrêt lors du lancement du moteur seulement |
| Matériel électrique | (a) contrôler que le matériel électrique est mis à terre selon des normes de sécurité locales <br> (b) débrancher l'alimentation électrique du réchauffeur des chemises d'eau (si monté) avant de travailler sur le moteur <br> (c) attention aux secousses électriques <br> (d) ne jamais ajuster les réglages du matériel électronique sans consulter le Manuel d'utilisation |


| Refroidissement et chauffage de composants | (a) toujours porter des gants résistants à la chaleur et utiliser le matériel de manipulation approprié |
| :---: | :---: |
| Système d'échappement | (a) contrôler les fuites éventuelles <br> (b) contrôler l'aération correcte de la salle des moteurs <br> (c) contrôler que les protections sont installées <br> (d) contrôler que l'échappement diesel est libre <br> (e) contrôler que la tuyauterie permet au gaz de s'échapper vers le haut <br> (f) contrôler que la tuyauterie est soutenue |
| Arrêter le moteur | (a) avant de remplacer l'huile de graissage <br> (b) avant de remplir le radiateur ou de faire l'appoint avec de l'antigel <br> (c) avant de réparer le moteur <br> (d) avant de régler les courroies <br> (e) avant de régler les poussoirs <br> (f) avant de changer les bougies/injecteurs <br> (g) avant de changer les fitres d'air/huile/combustible (non commutables) <br> (h) avant de serrer les boulons de fixation, etc. |
| Fluides inflammables | (a) ne jamais les stocker près du moteur <br> (b) ne jamais les utiliser près d'une flamme nue |
| Vêtements | (a) éviter de porter des vêtements larges, cravates, bijoux, etc. <br> (b) toujours porter des chaussures à bout en acier <br> (c) toujours porter une protection pour la tête, les yeux et les oreilles <br> (d) toujours porter une combinaison de travail <br> (e) toujours remplacer une combinaison contaminée immédiatement |
| Composants lourds | (a) utiliser le matériel de levage approprié <br> (b) ne pas travailler seul <br> (c) toujours porter un casque |
| Joints toriques en Viton | (a) toujours porter une protection pour les mains et les yeux en manipulant des joints toriques qui ont été exposés à des températures très élevées (ex. feu) |
| Solution de décapage | (a) toujours porter une protection pour les mains et les yeux pendant la manipulation <br> (b) toujours porter une combinaison et des chaussures adaptées |
| Manipulation/taille de joints contenant de l'amiante | (a) toujours porter une protection respiratoire <br> (b) toujours disposer d'un système d'aspiration des poussières <br> (c) toujours éliminer les déchets conformément aux exigences des réglementations locales |
| Elimination des déchets | (a) ne pas laisser de chiffons graisseux sur ou près du moteur <br> (b) ne pas laisser de pièces sur ou près du moteur <br> (c) disposer de récipients anti-incendie pour les chiffons graisseux |

La plupart des accidents sont causés par le non-respect des consignes de sécurité de base, et peuvent être évités en reconnalssant les situations potentiellement dangereuses avant qu'un accident ne se produise.
Arrêter et isoler ie moteur, et s'assurer qu'll ne peut pas redémarrer pendant les opérations d'entretien.
Toute utllisation incorrecte du moteur est dangereuse et peut provoquer des blessures ou la mort.
Les avertissements sont mis en évidence dans le Manuel d'utilisation et sur le moteur, et sont fdentifiés par le symbole suivant.

## AVERTISSEMENT $\triangle$ - UTLLISER LE SYMBOLE APPROPRIE

De nombreux risques potentieis peuvent se manifester pendant l'utilisation du moteur sans qu'il soit possible de les prévoir. Il n'est donc pas possible de signaler un avertissement dans le manuel pour toutes les circonstances éventuelles de risque potentiel.
Si vous utllisez une procédure qui n'est pas recommandée de façon spécifique, il faut vous assurer qu'elle est sans risques et qu'elle n'endommagera pas le moteur.

LEGENDE DES SYMBOLES QUE VOUS TROUVEREZ DANS LE MANUEL


| AVERTISSEMENT |  | DEFENSE DE FUMER | $\theta$ |
| :---: | :---: | :---: | :---: |
| TRES INFLAMMABLE |  | PAS DE FLAMMES NUES | (1) |
| DANGER: <br> FILS SOUS TENSION | T 5 | ARRET D'URGENCE | E |
| DANGER: SURFACE CHAUDE |  | INSTALLER LES PROTECTIONS AVANT DE DEMARRER | $\theta$ |
| ELOIGNEZ-VOUS DES CHARGES SUSPENDUES | $A$ | DANGER: aCIDE DE BATTERIE |  |

PORTERUNEPROTECTION POUR LES YEUX
UTILISERDES PROTECTIONS POUR LES OREILLES
PORTER DES CHAUSSURES DE PROTECTION

PORTER UN CASQUE
PORTER UNEPROTECTION POUR LES MAINS

TP345
date JUIN 91


4012TESI


4012TESI

This document has been printed from $\mathrm{SPl}^{2}$. Not for Resale

## SECURITE

## Equipement de levage du moteur

N'utiliser que des équipements de levage spécifiquement conçus pour le moteur.
Utiliser des équipements de levage ou se faire aider pour soulever des composants lourds du moteur, comme le bloc-cylindre, la culasse, le carter du volant moteur, le vilebrequin et le volant moteur.
Contrôler que les supports de levage du moteur sont sûrs avant de soulever le moteur.

## Joints en amiante

Certains joints et joints d'étanchéité contiennent des fibres d'amiante comprimées (voir Etiquette d'avertissement Fig. 1) dans des composants en caoutchouc ou des couvercles métalliques extérieurs. L'amiante 'blanche' (Chrysotile) qui est utilisée, est un type d'amiante plus sûr et le danger pour la santé est extrêmement faible.
Le contact avec des particules d'amiante se fait normalement au bord des joints ou lorsqu'un joint est endommagé pendant la dépose, ou encore lorsqu'un joint est déposé avec une méthode abrasive.
Pour s'assurer que le risque est limité au minimum, suivre les procédures suivantes lors du démontage ou du montage d'un moteur ayant des joints en amiante.

- Travailler dans une zone bien aérée.
- NE PAS fumer.
- Utiliser un racleur manuel pour enlever les joints - NE PAS utiliser de brosse métallique rotative.
- S'assurer que le joint à enlever est mouillé avec de l'huile ou de l'eau pour renfermer toutes les particules libres.
- Vaporiser tous les débris en amiante avec de l'eau et les placer dans un récipient fermé qui peut être scellé pour une élimination sûre.


## Dangers dérivant des hulles moteur usagées

Un contact prolongé et répété avec de l'huile minérale provoque l'élimination des huiles naturelles de la peau, ce qui se traduit par un dessèchement, des irritations et des dermatites. L'huile contient également des polluants extrêmement dangereux qui peuvent causer des cancers de la peau.
Des moyens de protection efficaces et des lavabos doivent être disponibles en toutes circonstances.


Fig. 1

La liste qui suit décrit les "Précautions pour la Protection de la Santé" conseillées pour réduire le risque de contamination.
1 Eviter un contact prolongé et répété avec des huiles moteur usagées.
2 Porter des vêtements de protection, y compris des gants imperméables, le cas échéant.
3 Ne pas mettre de chiffons imbibés d'huile dans les poches.
4 Eviter de contaminer les vêtements avec l'huile, notamment les sous-vêtements.
5 Laver les combinaisons de travail régulièrement. Jeter les vêtements non lavables et les chaussures imprégnées d'huile.
6 Un traitement de soin d'urgence doit être réclamé immédiatement en cas de coupures ouvertes et de blessures.
7 Appliquer des crèmes protectrices avant chaque période de travail pour faciliter l'élimination de l'huile minérale de la peau.
8 Se laver avec du savon et de l'eau chaude ou, en alternative, utiliser un détergent pour les mains et une brosse à ongles pour s'assurer que toute l'huile est éliminée. Des préparations contenant de la lanoline aident à remplacer les huiles naturelles de la peau qui ont été éliminées.
9 NE PAS utiliser d'essence, de kérosène, de gasoil, de diluants ou de solvants pour nettoyer la peau.
10 Si des problèmes dermatologiques apparaissent, consulter immédiatement un médecin.
11 Si possible dégraisser les composants avant de les manipuler.
12 Lorsqu'il y a des risques pour les yeux, utiliser des lunettes de protection ou un écran pour le visage. Une préparation pour rincer les yeux doit être disponible immédiatement.

## Protection de l'environnement

Il existe une législation pour protéger lienvironnement de l'élimination incorrecte des huiles de graissage usagées. Pour s'assurer que l'environnement est protégé, consulter votre Autorité Locale, qui vous conseillera.

## Joints en Viton

Certains joints utilisés dans les moteurs et dans les composants montés sur les moteurs sont fabriqués en Viton.
Le Viton est utilisé par de nombreux fabriquants et représente un matériau sûr dans les conditions normales d'utilisation.
Si le Viton brûle, un des produits du matériau brûlé est un acide extrêmement dangereux. Faire en sorte que le matériau brûlé ne soit jamais en contact avec la peau ou avec les yeux.
S'il est nécessaire d'entrer en contact avec des composants brûlés, il faut toujours prendre les précautions suivantes:

- S'assurer que les composants sont refroidis.
- Utiliser des gants en Néoprène et jeter les gants dans un endroit sûr après l'usage.
- Laver la zone avec une solution d'hydrate de calcium puis avec de l'eau claire.
- Pour éliminer les gants et les composants contaminés, suivre scrupuleusement les réglementations locales.
En cas de contamination de la peau ou des yeux, laver la zone concernée sous un filet d'eau claire continu ou avec une solution d'hydrate de calcium pendant 15-60 minutes. Consulter immédiatement un médecin.


## Informations pratiques

Pour nettoyer les composants
Il est très important que la zone de travail reste propre et que les composants soient protégés de la saleté et autres débris. Vérifier qu'aucune saleté ne contamine le système de combustible.
Avant de démonter un composant du moteur, nettoyez la zone autour du composant et s'assurer que toutes les ouvertures, les flexibles et les tuyaux débranchés sont bouchés.
Démonter, nettoyer et inspecter chaque composant avec soin. S'il est utilisable, le déposer dans un endroit propre jusqu'au moment de son utilisation. Les roulements à billes et à rouleaux doivent être nettoyés à fond et soigneusement inspectés. Si les roulements sont utilisables, ils doivent être immergés dans une huile à faible viscosité et protégés avec un papier propre jusqu'à leur utilisation.
Avant d'assembler les composants, vérifier que la zone est exempte de poussière et de saleté dans la mesure du possible. Inspecter chaque composant immédiatement avant de le monter, laver tous les tuyaux et les orifices et souffler de l'air comprimé à travers avant de procéder aux raccordements. Utiliser des gants de protection appropriés lorsque les composants doivent être dégraissés ou nettoyés avec du trichloréthylène, du white spirit, etc. Les solutions de dégraissage à base de trichloroéthane sont déconseillées

Les valeurs indiquées sont basées sur des moteurs réglés pour satisfaire les conditions de la norme ISO 3046/1 1981.

Pour les caractéristiques techniques complètes, consulter le Manuel d'Information Produits.
Type: moteur à gaz 12 cylindres et 16 cylindres (MINNOX), en V, refroidi à l'eau, turbocompressé, collecteurs d'échappement humides, avec refroidisseur d'air d'admission séparé refroidi à l'eau brute.

| GAMME | 4012TESI (MINNOX) | 4016TESI (MINNOX) |
| :---: | :---: | :---: |
| Cycle | 4 temps |  |
| Disposition des cylindres | En 'V' |  |
| Alésage | 160 mm |  |
| Course | 190 mm |  |
| Cylindrée totale | 45,842 litres | 61,123 litres |
| Taux de compression | 9,5:1 ou 11,5:1 |  |
| Sens de rotation | Sens inverse des aiguilles d'une montre sur côté volant |  |
| Ordre d'injection | $\begin{aligned} & 1 A, 6 B, 5 A, 2 B, 3 A, 4 B \\ & 6 A, 1 B, 2 A, 5 B, 4 A, 3 B \end{aligned}$ | 1A,1B,3A,3B,7A,7B,5A,5B 8A,8B,6A,6B,2A,2B,4A,4B |
| Numérotation des cylindres | Cylindre $\mathrm{n}^{\circ} 1$ à l'opposé du volant |  |
| Les cylindres A se trouvent du côté gauche du moteur, vus à partir du côté opposé au volant, et les cylindres B se trouvent du côté droit du moteur. <br> NOTA: Cette désignation n'est PAS la même que la désignation BS et ISO. |  |  |
| Jeux des soupapes | Echappement 0,4 mm |  |
| Diamètre des soupapes d'admission et d'échappement (mm) | 48 |  |
| Calage des soupapes | Voir la Section U7 du Manuel d'Utilisation |  |
| Réglage des soupapes | Voir à partir de la page 39 |  |
| Calage d'allumage | Voir plaque du constructeur du moteur |  |
| Vitesses des pistons | $\begin{aligned} & \text { Régime moteur tr/min } \\ & 1000 \\ & 1200 \\ & 1500 \end{aligned}$ | $\mathrm{m} / \mathrm{sec}$ 6,33 7,60 9,50 |

## SYSTEME DE REFROIDISSEMENT TYPE

| Liquides de refroidissement homologués | Voir page 17 |
| :---: | :---: |
| Contenance totale y compris refroidisseur d'admission et collecteurs d'échappement humides | 81 litres 110 litres |
| Contenance totale moteur et radiateur | 239 litres 278 litres |
| Contenance totale moteur et échangeur de chaleur | 153 litres 183 litres |
| Température de coupure du moteur | $96^{\circ} \mathrm{C}$ |
| Température maxi dans le moteur | à déterminer selon la chaleur dissipée et le débit d'eau à travers chaque modèle de moteur particulier |
| Température d'ouverture du thermostat | $71^{\circ} \mathrm{C}$ (gaz naturel) $85^{\circ} \mathrm{C}$ (gaz de décharge ou biogaz) $92^{\circ} \mathrm{C}$ (moteurs HC ) |
| Pression du circuit | de 0,5 a 0,7 bar |
| Pression maxi. à la sortie de la pompe du circuit de refroidissement à chemise | 2,5 bar. maxi. |

## SYSTEME D'ALIMENTATION DE GAZ

|  | 4012TESI (MINNOX) | 4016TESI (MINNOX) |
| :---: | :---: | :---: |
| Gaz homologué | Gaz naturel britannique |  |
| Valeur calorifique minimum | $34,71 \mathrm{MJ} / \mathrm{Nm}^{3}$ |  |
| Unité de mélange carburateur | Deltec 200-11 |  |
| Corps de papillon du carburateur | Deltec 100-11 | Deltec 140-11 |
| Valve modulatrice gaz | Deltec diam. 36 mmDeltec diam. 45 mmDeltec diam. 38 mm 4016 TESI (minnox 140 HE) SEULEMENT |  |
| Pression de gaz minl. | $15 \mathrm{mbar}(1,5 \mathrm{kPa})$ |  |
| Pression de gaz maxi. | $50 \mathrm{mbar}(5 \mathrm{kPa})$ |  |
| Type de régulateur (pression zéro) | Dungs FRS 220, 5065 ou 5100 |  |
| Moteurs récents | ou Kromschroder Gl50 R02 ou Gl65 R02 |  |
| Pression d'alimentation | SI au-dessus de 50 mbar ( 5 kPa ) un régulateur supplémentaire doit être utilisé pour amener la pression d'alimentation entre les valeurs mini et maxi indiquées plus haut. |  |
| Eléments supplémentaires pour satisfaire les procédures de l'Institution of Gas Engineers IGE/UP/3 pour $4012 / 16$ (Minnox). |  |  |
| Détecteur de basse pression | $\mathrm{N}^{\circ}$ plèce Perkins voir Llvret Plèces Détachées (alimentation de gaz à basse pression seulement) |  |
| Electrovannes gaz | Non foumies par Perkins |  |
| Détecteur de retour de flamme | $\mathrm{N}^{\circ}$ pièce Perkins Volr Livret Plèces Détachées |  |
| Valve de coupure de gaz manuelle | $\mathrm{N}^{0}$ piece Perkins $\mathrm{n}^{\circ}$ Voir Livret Pièces Détachées (sl montée) |  |

SYSTEME D'ALLUMAGE

| Type unité d'allumage | Altronic DISN 800 |
| :--- | :---: |
| Type bobine d'allumage | Altronic 501 061 (moteurs L.C.) Altronic 591 010 (moteurs H.C.) |
| Type bougie d'allumage | CHAMPION RN79G (anclens moteurs L.C.) |
|  | CHAMPION RB77 WPC 18 mm (nouveaux moteurs) |
| Ecartement bougles | RN 79G 0,5 mm |
|  | RB77WPC $0,4 \mathrm{~mm}$ |

REGULATEUR

| Marque | Electronique Heinzmann |  |
| :--- | :--- | :--- |
| Type | $2 \times E 6 \mathrm{~V}$ | $2 \times E 10$ |

SYSTEME DE GRAISSAGE

| Hulle recommandée | Voir pages 14-16 |  |
| :---: | :---: | :---: |
| Type de système | Carter humide, pompe à huile montée à l'extérieur |  |
| Contenance totale en huile (refroidisseur d'huile et filtre) | 178 litres | 238 litres |
| Contenance du carter (jauge) mini. | 136 litres | 147 litres |
| Contenance du carter (jauge) maxi. | 159 litres | 214 litres |
| Pression de thuile mini. (régime) sur les paliers | 340 kPa |  |
| Pression maxi. du carter | 25 mm colonne d'eau |  |
| Température maxi. de l'huile dans le carter | $105^{\circ} \mathrm{C}$ |  |
| Filtre huile de graissage | Type à cartouches jetables |  |
| Reniflard du carter | Circult fermé |  |

SYSTEME D'ADMISSION

|  | 4012TESI (MINNOX) | 4016TESI (MINNOX) |
| :--- | :---: | :---: |
| Filtre à air | Double |  |
| Type (élément papier) | S551A |  |
| Dépression de prise d'air maxi. | $543 \mathrm{~mm} \mathrm{H} \mathrm{O}(40 \mathrm{mmHg})(\mathrm{moteurs}$ L.C.) |  |
|  | $406 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}(30 \mathrm{mmHg})(\mathrm{moteurs} \mathrm{H.C)}$. |  |
| Tarage de l'indicateur de colmatage | 380 mm H O |  |
| Turbocompresseur | Double Garrett (4016TESI 140 H.C. seulement) |  |
|  | Double Schwitzer (tous les autres moteurs) |  |

SYSTEME D'ECHAPPEMENT

| Type de collecteur | HUMIDE |
| :--- | :---: |
| Bride de sortie d'échappement | Verticale (double) |
| Bride correspondante | $2 \times 6^{\prime \prime}$ Tableau D |
| Contre-pression max. à l'échappement | 40 mm Hg |
| Temp. maxi. échappement $\left({ }^{\circ} \mathrm{C}\right)$ <br> (après turbocompresseur) | Voir Manuel d'Information Produits |

VOLANT

| Dimension SAE | $18^{n}$ |
| :--- | :---: |
| Nombre de dents sur couronne | 156 |

## CARTER DE VOLANT

| Dimension SAE | ' $00^{\prime}$ |
| :--- | :--- |

## VILEBREQUIN

| Poids suspendu maximum sur le palier arrière | 1700 kg |  |
| :--- | :---: | :---: |
| Amortisseur de vibrations de torsion | $1 \times 18^{n}$ | $2 \times 20^{n}$ |
| NOTA: Sous réserve d'essais de vibration de torsion satisfaisants, des amortisseurs de vibration de torsion <br> différents peuvent être montés. |  |  |

POIDS A SEC

| Poids à sec | 4380 kg | 5520 kg |
| :--- | :---: | :---: |
| Poids humide | 4680 kg | 5820 kg |

## TROUS DE SCELLEMENT

| Diamètre des trous (pieds moteur) | 22 mm |
| :--- | :---: |
| $\mathrm{~N}^{\circ}$ de trous | 8 |

SYSTEME ELECTRIQUE

| Tension | 24 V |  |
| :--- | :---: | :---: |
| Type d'alternateur | Prestolite LNA4024/5 avec régulateur interne |  |
| Puissance alternateur (amp) | 30 A à une puissance stabilisée de 28 Volts |  |
| Type de démarreur (double) Prestolite/Butec | MS1/108 |  |
| Nombre de dents (couronne) | 156 |  |
| Nombre de dents (démarreur) | 12 |  |
| Capacité batterie démarrage à froid <br> selon Norme IEC à $0^{\circ} \mathrm{C}$ | 286 (chaque batterie) | 286 (chaque batterie) |
| Batterie (au plomb) | $24 \mathrm{~V}(2 \times 12 \mathrm{~V})$ à $0^{\circ} \mathrm{C}(286 \mathrm{Ah})$ |  |

## EQUIPEMENT DE PROTECTION

Avant de réarmer les équipements de protection, il faut établir si des réglages spéciaux (pour ce moteur particulier) ont été spécifiés dans le contrat de vente du moteur. Cela est particulièrement important pour TOUS les réglages de température élevée de l'eau, et TOUTES les applications Cogen.
Les réglages standard pour les équipements de protection sont les suivants:
Manocontact de pression élevée du collecteur d'air
172 kPa

| Commutateurs d'arrêt | Alarme | Arrêt |  |
| :--- | :---: | :---: | :---: |
| Température d'huile élevée | $115^{\circ} \mathrm{C}$ | $120^{\circ} \mathrm{C}$ |  |
| Pression d'huile faible | $2,06 \mathrm{bar}$ | $1,93 \mathrm{bar}$ |  |
| Température d'eau élevée |  |  |  |
| Thermostat $71^{\circ} \mathrm{C}$ | $91^{\circ} \mathrm{C}$ | $96^{\circ} \mathrm{C}$ |  |
| Thermostat $85^{\circ} \mathrm{C}$ | $96^{\circ} \mathrm{C}$ | $101^{\circ} \mathrm{C}$ |  |
| Thermostat $96^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $105^{\circ} \mathrm{C}$ |  |
| Attention: ${ }^{\circ} \mathrm{C}$ |  |  |  |

Attention: Les réglages standard ci-dessus ne remplacent en aucun cas les réglages indiqués dans le contrat de vente du moteur.

| Survitesse | $15 \%$ (seulement à $1500 \mathrm{tr} / \mathrm{min}$ ) |
| :--- | :---: |
| Pression élevée disque d'éclatement du <br> collecteur d'air <br> (anciens moteurs seulement) | $75 \mathrm{tb} / \mathrm{in}^{2}$ à $42^{\circ} \mathrm{C}$ ou $58 \mathrm{Ib} / \mathrm{in}^{2}$ à $120^{\circ} \mathrm{C}$ |

DEMARRAGE PNEUMATIQUE

| Pression du démarreur pneumatique | 1034 kPa |
| :--- | :---: |
| Alimentation d'air comprimé | 1172 kPa |
| Type | Ingersoll Rand Type SS815 |

TABLEAU DE COMMANDE (MONTE SUR MOTEUR)

|  | Fonctionnement normal |
| :--- | :---: |
| Pression de l'huile | entre 300 et 560 kPa |
| Température de l'huile | entre 80 et $90^{\circ} \mathrm{C}$ |
| Température de l'eau | entre 65 et $85^{\circ} \mathrm{C}$ |
| Température d'échappement | Voir Manuel d'Information Produits |
| Pression de suralimentation | Voir Certificat d'essai |

CHAUFFAGE DES CHEMISES D'EAU

| Radiateur | $2 \times 4 \mathrm{~kW}$ |
| :--- | :--- |

NOTA: *Les têtes et les filetages des boulons doivent être lubrifiés avec de l'huile moteur propre.
** Les boulons de culasse doivent être lubrifiés sous la tête, sous les rondelles et sur le filetage avec de la graisse PBC (Poly-Butyl-Cuprysil). Important: Se reporter à la Section R10 du Manuel d'Utilisation avant le montage. Tous les autres boulons doivent être lubrifiés avec de l'huile moteur propre, en veillant à ne pas huiler les têtes ou les facettes.

## COUPLES DE SERRAGE

| GROUPE CULASSE |  | lbf.ft | Nm |
| :---: | :---: | :---: | :---: |
| Boulon de culasse ** (ancien type) 7 Voir | M24 | 550 | 750 |
| Boulon de culasse ** (nouveau type - à tige élastique) Section R14 | M24 | 530 | 723 |
| Boulon/écrou d'axe de culbuteur | M16 | 90 | 120 |
| Ecrou de réglage culbuteur d'admission/échappement | M12 | 35 | 50 |
| Boulons du carter de culbuteurs | M10 | 35 | 50 |
| Boulon collecteur d'air | M10 | 35 | 50 |
| Boulon collecteur d'échappement | M10 | 50 | 70 |
| Ecrous de serrage en V du turbocompresseur (Schwitzer) |  | 7 | 9,5 |
| (Mitsubishi) |  | 7 | 9,5 |
| (Garrett) |  | 10 | 13,5 |
| Vis de retenue de la plaque intermédiaire (si montée) | M10 | 35 | 50 |

GROUPES BLOC-CYLINDRES ET VILEBREQUIN

| * Boulon de chapeau de palier principal | M24 | 580 | 783 |
| :--- | :--- | :--- | :--- |
| Boulons latéraux (chapeaux de palier principal) | M16 | 124 | 168 |
| Boulons carter d'huile sur bloc-cylindres | M10 | 40 | 57 |
| *Boulon de chapeau de bielle | M16 | 210 | 285 |
| Boulons amortisseurs visqueux sur vilebrequin | M16 | 250 | 340 |
| Boulon du volant sur vilebrequin | M16 | 250 | 340 |
| Boulons du raccord d'entrainement avant sur vilebrequin | M16 | 250 | 340 |
| Boulons masseltte d'équilibrage | M16 | 250 | 340 |
| Boulons poulie avant du vilebrequin | M16 | 250 | 340 |
| Vis du gicleur de refroidissement du piston | M10 | 35 | 50 |
| Boulons du carter de volant | M10 | 35 | 50 |

POMPE A HUILE DE GRAISSAGE
$\begin{array}{llll}\text { Boulons, corps de pompe sur plaque carter de distribution } & \text { M10 } & 35 & 50 \\ \text { Ecrou bas engrenage sur arbre de commande } & \text { M24 } & 175 & 237\end{array}$

| GROUPE ARBRE A CAMES |  | Ibf.ft | Nm |
| :---: | :---: | :---: | :---: |
| Boulon engrenage arbre à cames | M12 | 110 | 150 |
| Boulon plaque de butée arbre à cames | M10 | 35 | 50 |
| Vis à chapeau carter de poussoir arbre à cames | M10 | 50 | 70 |
| Boulon carter de poussoir | M10 | 35 | 50 |
| Boulons moyeu de pignon intermédiaire | M10 | 35 | 50 |
| GROUPES POMPE A EAU ET POMPE A HUILE |  |  |  |
| Unités d'engrenages pompe à eau/pompe à huile | M24 | 170 | 230 |
| Boulons collecteur d'eau sur refroidisseur d'huile | M10 | 35 | 50 |
| Boulons collecteur d'eau sur carter de distribution | M10 | 35 | 50 |
| Ecrous engrenage de pompe à eau brute (montage à sec) | M35 | 184 | 250 |
| Pieds moteur | M12 | 70 | 95 |
| REGULATEUR |  |  |  |
| Boulon plaque de montage arbre de commande | M10 | 35 | 50 |
| ENTRAINEMENT VENTILATEUR |  |  |  |
| Vis manchon conique de blocage poulie de ventilateur | 1/2" BSW | 35 | 50 |
|  | 5/8 ${ }^{\text {n }}$ BSW | 124 | 170 |
| ALTERNATEUR |  |  |  |
| Ecrous manchon conique de blocage poulie d'entraînement | 3/8' BSW | 14 | 20 |
| SYSTEME D'ALLUMAGE |  |  |  |
| Bougie d'allumage | M18 $\times 1,5$ | 35 | 50 |
| Vis à chapeau collier d'adaptateur | M12 | 100 | 136 |
| Vis à chapeau collier d'adaptateur (anciens moteurs) | M10 | 50 | 68 |
| Boulon de retenue pour couvercle disque de calage | M10 | 35 | 50 |
| Boulon du logement disque de calage sur plaque de montage | M10 | 35 | 50 |
| Vis pignon de commande | M10 | 50 | 70 |
| Vis à chapeau accouplement d'entraînement | M6 | 10 | 13,5 |
| Vis à chapeau engrenage mené | M10 | 50 | 70 |
| Ecrou disque magnétique sur abre | M12 | 35 | 50 |
| Boulon bride d'axe de disque sur arbre à cames | M12 | 120 | 171 |
| ACCOUPLEMENT FLEXIBLE (HOLSET) |  |  |  |
| Vis couvercle d'accouplement | M12 ou 1/2" UNC | 90 | 129 |
| Vis bride d'entrainnement accouplement (accouplement taille 2,15) | M12 ou 1/2" UNC | 90 | 129 |
| au volant (accouplement taille 3,86) | M16 ou 5/8"UNC | 175 | 250 |

## 12

## COUPLES DE SERRAGE D'USAGE GENERAL

Les couples de serrage suivants sont valables pour des filetages métriques à pas grossier pour l'acier de qualité 8.8 mais ne remplacent pas les valeurs préconisées ci-dessus.

| Diamètre du filetage $(\mathrm{mm})$ | lbf.ft | Nm |
| :--- | :--- | :--- |
| 8 | 18 | 25 |
| 10 | 35 | 50 |
|  |  |  |
| M10 - Acier 12.9 | 50 | 70 |
| Ces valeurs sont basées sur la norme | BS3692. |  |

Ces valeurs sont basées sur la norme BS3692.

## HUILE DE GRAISSAGE

## QUANTITE D'HUILE

|  | 4012TESI | 4016TESI |
| :--- | :--- | :--- |
| Contenance totale du circuit | 178 litres | 238 litres |
| Contenance maximum du carter | 159 litres | 214 litres |
| Le repère minimum de la jauge indique | 136 litres | 147 litres |

## ATTENTION

Pour choisir une huile de graissage appropriée pour un moteur à gaz, il est nécessaire de prendre en compte la qualité du combustible.

## MOTEURS AU GAZ NATUREL (ABSENCE DE PRODUITS ACIDES)

L'huile doit avoir une qualité spécialement formulée par les principales compagnies pétrolières pour les moteurs à gaz naturel turbocompressés et suralimentés. L'huile doit contenir des additifs détergents/ dispersants et anti-usure. L'huile doit avoir une résistance élevée à l'oxydation et une excellente stabilité thermique. Les huiles modernes pour moteurs à gaz ne dépendent pas d'un indice total de base élevé pour obtenir une longue durée de vie et les additifs spéciaux actuellement offerts par la plupart des fournisseurs d'huile sont désormais conformes à ce critère.
Les moteurs équipés de catalyseurs à oxydation (à 2 voies) ont besoin d'un lubrifiant à basse teneur en zinc et en phosphore. Le fournisseur d'huile doit garantir que la marque d'huile fournie est compatible avec le catalyseur.

## MOTEURS AU GAZ BIOLOGIQUE (CONTENANT DES PRODUITS ACIDES A DES NIVEAUX AGREES PAR PERKINS ENGINES (STAFFORD) LTD) <br> Ces moteurs ont besoin d'une huile de graissage qui présente une alcalinité de réserve plus élevée que le moteur au gaz naturel, et par conséquent lindice total de base doit être supérieur à 8 et inférieur à 10 avec une teneur en cendres sulfatées de 0,5 à $1,1 \%$. Le fournisseur d'huile pourra vous conseiller sur le choix d'huiles appropriées, sur la base d'une analyse du gaz.

## MOTEURS AU GAZ NATUREL ET BIOGAZ

Si les huiles pour moteur à gaz ne sont pas disponibles, veuillez consulter Perkins Engines (Stafford) Ltd qui vous renseignera.

## GRADE DE VISCOSITE

La viscosité de l'huile utilisée doit être SAE30 ou SAE40. En général SAE30 est utilisée à des températures ambiantes moyennes inférieures à $30^{\circ} \mathrm{C}$ et SAE40 à des températures supérieures à $30^{\circ} \mathrm{C}$. Etant donné que ces moteurs fonctionnent généralement en continu, il est possible d'utiliser des huiles de viscosité supérieure, étant donné que la mollesse au démarrage n'est généralement pas critique.
L'utilisation d'huiles SAE40 permet de réduire la consommation d'huile mais, dans certaines conditions, elle réduit aussi la périodicité du remplacement de l'huile.

## PERIODICITE DU REMPLACEMENT DE L'HUILE (MOTEURS AU GAZ NATUREL)

Pour un fonctionnement normal des moteurs à gaz, l'huile doit être remplacée après les 500 premières heures, après quoi la périodicité de remplacement d'huile est de 800 heures ou chaque année, suivant ce qui survient en premier.
II peut être possible de prolonger lintervalle de remplacement de l'huile, lorsqu'un programme de remplacement d'huile a été approuvé par Perkins Engines (Stafford) Ltd, après l'analyse d'échantillons d'huile prélevés sur une période de 1000 heures d'utilisation du moteur. Toutefois, même si l'analyse indique une qualité satisfaisante de l'huile, la durée d'utilisation de l'huile ne doit pas dépasser 1000 heures.

Les paramètres suivants doivent être considérés comme critiques:
Viscosité à $100^{\circ} \mathrm{C}$
Substances insolubles
16,5 cSt maximum
Indice total d'acide (TAN)
Indice total de base (TBN)
1,5 maximum
moins de 4 fois la valeur du TAN pour lhuile neuve
$50 \%$ de moins que la valeur de l'huile neuve
L'Indice Total de base (TNB) et I'Indice Total d'acide (TAN) ne doivent pas se croiser.
Nitration
Oxydation
25 maximum
Eau
25 maximum
$0,2 \%$ maximum
Fer
Inférieur à 20 ppm*
Cuivre
Inférieur à $40 \mathrm{ppm}^{*}$
NOTA: Les échantillons d'huile doivent être prélevés au niveau intermédiaire du carter d'huile du moteur, jamais du bouchon de vidange du carter d'huile.
En cas de problème d'approvisionnement d'huile de graissage ou d'une teneur élevée en soufre du gaz, contacter Perkins Engines (Stafford) Ltd pour tout conseil sur la sélection des huiles adaptées.

## PERIOḊICITE DE REMPLACEMENT DE L'HUILE (MOTEURS AU BIOGAZ)

Les moteurs qui fonctionnent soit au gaz de digesteur ou au gaz de décharge doivent être soumis à des conditions spéciales en ce qui concerne la périodicité de remplacement de l'huile.
Lorsque le(s) moteur(s) est (sont) mis en service pour la première fois, une analyse du gaz du site doit être soumise à Perkins Engines (Stafford) (analyse complémentaire de l'analyse fournie au moment de la commande) ainsi qu'une description de l'huile de graissage proposée pour l'utilisation.
Lorsque le moteur commence à fonctionner, il est indispensable de prélever des échantillons d'huile toutes les 150 heures et de transmettre le résultat de l'analyse à Perkins Engines (Stafford) au plus vite.
Cette démarche est nécessaire dans la mesure où le gaz est variable. Si l'on continue à utiliser l'huile après sa détérioration au-delà des limites spécifiées ci-après, le moteur peut être endommagé. La garantie sur le moteur dépend de la conservation de l'huile dans des conditions satisfaisantes. Pour satisfaire cette exigence, il faut continuer le programme d'analyse de l'huile pendant toute la période de garantie. La fréquence de l'analyse peut être espacée mais elle doit indiquer qu'au moment du remplacement de l'huile, celle-ci rentre toujours dans des limites acceptables.

## PARAMETRES CRITIQUES

Viscosité maximum à $100^{\circ} \mathrm{C}$
L'indice total d'acide et l'indice total de base ne doivent pas se croiser. $\quad 16,5 \mathrm{cSt}$
Le TBN ne doit pas être réduit à moins de $50 \%$ de la valeur de l'huile neuve
La nitration ne doit pas dépasser
$\begin{array}{ll}\text { L'oxydation ne doit pas dépasser } & 30\end{array}$
$\begin{array}{ll}\text { Les substances insolubles }>3 \mu \text { ne doivent pas dépasser } & \text { 1,5 }\end{array}$
Pourcentage max. eau $0,2 \%$
Silicone 100 ppm max
Sodium 50 ppm max
Fer 35 ppm max $^{*}$
Cuivre

Pendant la période initiale d'utilisation du moteur, les paramètres marqués d'un * auront des niveaux supérieurs. Cela est dû à la procédure de rodage.

## EN AUCUN CAS L'HUILE NE DOIT ETRE UTILISEE PENDANT PLUS DE 900 HEURES MEME SI L'ANALYSE INDIQUE QUE L'HUILE RENTRE DANS DES LIMITES ACCEPTABLES.

NOTA: Lorsque le moteur fonctionne avec des combustibles à base de méthane, environ un litre d'eau est produit pour chaque mètre cube de méthane brûlé. Il est important de s'assurer que les fuites de gaz du piston ne peuvent pas se condenser dans le carter ou dans les tuyaux reliés au reniflard. L'eau a un effet extrêmement nocif sur la durée de vie de l'huile, car elle attaque les additifs. Il est indispensable que le reniflard du moteur fonctionne correctement. L'eau doit être vidangée du carter d'huile une fois par semaine.

AVERTISSEMENT
LE NON RESPECT DE CES INSTRUCTIONS RISQUE D'ENDOMMAGER LE MOTEUR.

HUILES DE GRAISSAGE HOMOLOGUEES (MOTEURS A GAZ NATUREL)
(Adaptées au gaz naturel britannique et hollandais)

Marque
Type
MOBIL Pegasus 480 (pour moteurs équipés de catalyseur)
ESSO Estor Supreme LA 40
ESSO Estor Protec LA 40
TEXACO
SHELL
CASTROL

Geotex LA ou HD
Mysella MA 40
NG404-408

HUILES DE GRAISSAGE HOMOLOGUEES (BIOGAZ ET AUTRES GAZ)
Marque
Type
MOBIL Pegasus 489 + programme *EM/PA
*EM/PA = Entretien Equipement par Analyse Progressive

## MOTEURS A GAZ EQUIPES DE CATALYSEUR

Ces moteurs doivent fonctionner avec des huiles ayant une teneur en cendre sulfatée maximum de $0,5 \%$, une teneur en zinc maximum de $0,04 \%$ et une teneur maximum en phosphore de $0,09 \%$ par poids (voir tableau ci-dessus).

## AVERTISSEMENT <br> 1TOUJOURS ARRETER LE <br> MOTEUR ET LAISSER LE CIRCUIT SOUS PRESSION REFROIDIR AVANT D'ENLEVER LE BOUCHON DE REMPLISSAGE. EVITER LE CONTACT DE L'ANTIGEL AVEC LA PEAU EN PORTANT DES GANTS DE PROTECTION.

## SYSTEME DE REFROIDISSEMENT DU MOTEUR

Pour protéger le système de refroidissement du moteur de toute corrosion, il est indispensable d'utiliser un liquide de refroidissement contenant des additifs appropriés qui assurent ia protection nécessaire.

## Attention: L'eau non traitée ne convient pas.

## QUALITE DE L'EAU

L'eau mélangée à l'additif doit posséder les caractéristiques suivantes:
Chlorure inférieur à 80 PPMV (PPMV = parties par million en volume)
Sulfates inférieurs à 80 PPMV
Dureté totale inférieure à 200 PPMV
pH de l'eau compris entre 7 et 7,5 (neutre à légèrement alcalin)

## ADDITIFS POUR L'EAU

En raison de la complexité du système de refroidissement, il est nécessaire d'utiliser un additif contenant une proportion équilibrée d'inhibiteurs de corrosion.
Pour obtenir la protection nécessaire, un mélange $50 /$ 50 d'antigel Shell Safe Premium et d'eau doit être utilisé en permanence, même dans les zones où le risque de gel est improbable.
Ce mélange 50/50 assure une protection contre le gel jusqu'al $-35^{\circ} \mathrm{C}$. En cas de difficulté pour se procurer l'antigel Shell Safe Premium, contacter Perkins Engines (Stafford) Limited qui vous conseillera un produit de remplacement.
Les additifs contenant des nitrites, borates, phosphates, chromates, nitrates ou silicates ne doivent jamais être utilisés, car ces produits sont incompatibles avec les matériaux du système de refroidissement.

Pour mélanger l'antigel à l'eau. toujours suivre la recommandation du fabricant, qui consiste à ajouter l'antigel à l'eau et de les bien mélanger avant de remplir le circuit de refroidissement.
En raison d'une concentration excessive, le mélange de l'eau à l'antigel peut provoquer la formation d'un gel dans le mélange, qui peut obstruer les passages d'eau et entraîner une surchauffe localisée due à la perte du débit d'eau.

## ENTRETIEN DU LIQUIDE DE REFROIDISSEMENT

Le mélange eau/antigel des moteurs en service doit être remplacé à intervalles réguliers au moins une fois par an.
II est indispensable de maintenir le liquide de refroidissement au degré correct d'alcalinité, c.a.d. que le pH ne doit pas dépasser 7,5. Un densimètre n'indique que la teneur en éthylène glycol. Ce n'est pas une mesure de protection contre la corrosion.

## AVERTISSEMENT <br>  <br> LE NON RESPECT DES

## SPECIFICATION DU GAZ

Un moteur neuf doit être réglé pour fonctionner avec du gaz naturel propre, conformément aux spécifications sur le gaz naturel britannique, ayant un pouvoir calorifique inférieur de $34,71 \mathrm{MJ} / \mathrm{Nm}^{3}$.
La différence entre le pouvoir calorifique supérieur (HCV) et le pouvoir calorifique inférieur (LCV) est que HCV est la quantité totale de chaleur fournie par le gaz pendant la combustion, et LCV est le pouvoir calorifique supérieur moins la quantité de chaleur utilisée pour évaporer la teneur en eau du gaz. Etant donné que la chaleur dissipée pendant l'évaporation de l'eau est différente pour les différents types de gaz, on choisit le pouvoir calorifique inférieur du gaz comme base pour les données de consommation du combustible. Le gaz ne doit pas contenir de fractions d"hydrocarbures liquides.

## AVERTISSEMENT <br> UN MOTEUR QUI N'EST PAS REGLE POUR ETRE ADAPTE AU GAZ DU SITE, PEUT ENTRAINER UN FONCTIONNEMENT NON ECONOMIQUE, UNE PERTE DE PUISSANCE OU UN ENDOMMAGEMENT QUI POURRAIENT PROVOQUER DES BLESSURES.

Lorsque des gaz différents du Gaz Naturel Britannique doivent être utilisés, comme le gaz de tête de puits, le gaz de digesteur ou le gaz de décharge, il est indispensable de soumettre une analyse détaillée du gaz à Perkins Engines (Stafford) Ltd., dans la mesure où il peut être nécessaire de régler ou de modifier l'équipement de gaz standard.

Valeurs limites du Gaz Naturel Britannique
(1) Indice de méthane supérieur à
(2) Substances combustibles supérieures à
(3) Pouvoir calorifique (LHV) supérieur à
(4) Ethane
(5) Teneur en hydrogène inférieure à
(6) Teneur en propane inférieure à
(7) Teneur en isobutane inférieure à
(8) Butane normal inférieur à
(9) Pentane normal et fractions plus grandes (hexane, heptane, etc.). La somme doit être inférieure à Pression gaz à l'admission des régulateurs supérieure à
11) Pression gaz sans régulateurs de pression supplémentaires inférieure à Hydrogène sulfuré inférieur à

| $4012 / 16 T E S I(M I N N O X)$ |  |
| :---: | :---: |
| $200 ~ \& ~ 140 ~ L . C . ~$ | $140 \& 90 \mathrm{H.C}$. |
| 65 | 80 |
| $85 \%$ | $95 \%$ |
| $31,7 \mathrm{MJ} / \mathrm{Nm}^{3}$ | $34 \mathrm{MJ} / \mathrm{Nm}^{3}$ |
| $\left(850 \mathrm{BTU} / \mathrm{St}^{3}\right)$ | $\left(912 \mathrm{BTU} / \mathrm{Stt}^{3}\right)$ |
| $6 \%$ | $4,5 \%$ |
| $0,2 \%$ | $0,1 \%$ |
| $2 \%$ | $1,0 \%$ |
| $0,2 \%$ | $0,2 \%$ |
| $0,2 \%$ | $0,2 \%$ |
|  |  |
| $0,02 \%$ | $0,02 \%$ |
| 15 mbar | 15 mbar |
| $(1,5 \mathrm{kPa})$ | $(1,5 \mathrm{kPa})$ |
| 50 mbar | 50 mbar |
| $(5 \mathrm{kPa})$ | $(5 \mathrm{kPa})$ |
| $0,01 \%$ | $0,01 \%$ |
| ou 100 ppm | ou 100 ppm |

NOTA: Les valeurs peuvent être réduites si le pouvoir calorifique inférieur du combustible est inférieur à 34,71 $\mathrm{MJ} / \mathrm{Nm}^{3}$. D'autre part, la pression doit être constante pour maintenir les émissions et la stabilité. Si l'un des paramètres indiqués ci-dessus n'est pas satisfait, consulter Perkins Engines (Stafford) Ltd qui vous conseillera.

## REGLEMENTATIONS DE SECURITE POUR LE GAZ

Les réglementations' légales en vigueur au Royaume-Uni exigent que les appareils et les équipements pour le gaz soient installés et utilisés conformément aux REGLEMENTATIONS DE SECURITE POUR LE GAZ (INSTALLATION ET UTILISATION).
Seules des personnes compétentes sont autorisées à installer ces équipements. Se référer à la norme IGE UP/3 de l'Institute of Gas Engineers. En dehors du Royaume-Uni, toute personne entreprenant un travail sur le moteur ou en relation avec le moteur et son équipement de gaz en particulier, doit s'informer sur les réglementations nationales et locales pour vérifier leur conformité.

REDUCTION DE LA PUISSANCE

| AVERTISSEMENT |
| :--- |
| PRENDRE EN COMPTE TOUS LES FACTEURS |
| QUI PEUVENT CAUSER UNE REDUCTION DE |
| PUISSANCE, QU'IL S'AGISSE DE LA |
| SPECIFICATION DU GAZ, DE L'ALTITUDE, DE LA |
| TEMPERATURE AMBIANTE OU DE L'HUMIDITE. |
| SI UNDE CES FACTEURS DEVIE DE LA VALEUR |
| STANDARD SPECIFIEE DANS CE MANUEL, LE |
| REGIME DU MOTEUR A GAZ DOIT ETRE REGLE |
| SUIVANT LES INSTRUCTIONS CI-DESSOUS. |

## REGLAGE DE LA PUISSANCE DU MOTEUR

 SELON LES CONDITIONS REELLES DU SITELa réduction de la puissance d'un moteur par rapport à son régime normal dans des conditions de température et de pression normales, permet de contrer les effets nocifs des conditions du site, par exemple l'altitude et la température ambiante.
Il se peut que Perkins Engines (Stafford) Lid ne soit pas au courant de la destination finale d'un moteur au moment où il quitte l'usine. Le moteur est réglé pour fournir la puissance à une température et à une pression normales, conformément aux prescriptions de la norme ISO 3046, en utilisant du gaz conforme à la Spécification sur le Gaz Naturel Britannique, ayant un pouvoir calorifique inférieur de $34,71 \mathrm{MJ} / \mathrm{Nm}^{3}$. Lorsqu'on travaille dans les conditions réelles sur le terrain, ces valeurs peuvent gravement endommager le moteur (voir page 18).
Si le gaz utilisé satisfait les conditions ci-dessus, il suffit de réduire la puissance du moteur selon les conditions d'altitude et de température ambiante.
Tout moteur ainsi livré devra être détaré suivant le pourcentage indiqué dans le manuel d'Informations Produits, par le constructeur de l'équipement dans ses ateliers ou même sur le site.
Pour réduire la puissance, il faut calculer (à l'aide des pourcentages de réduction de puissance indiqués plus haut) la nouvelle puissance réduite du moteur, et faire tourner le moteur ou le groupe électrogène à cette charge.
Dans la mesure du possible, cette limite de charge maximum doit être réglée et bloquée sur le panneau de commande du moteur.

## PREPARATION POUR LE DEMARRAGE INITIAL REMPLISSAGE EN HUILE DU MOTEUR

Retirer le bouchon de vidange pour vérifier que le carter inférieur est propre et vide. Remettre et bloquer le bouchon. Enlever le bouchon de remplissage d'huile situé du côté droit du carter, en tournant la poignée en T dans le sens inverse des aiguilles d'une montre et en la tirant Fig. 2. Remplir le carter jusqu'au repère maximum de la jauge, avec le grade et la quantité d'huile préconisés, voir pages 14-16. Remettre le bouchon en place en tournant la poignée en $T$ pour serrer et le bloquer.

## AMORCAGE DU TURBOCOMPRESSEUR

Avant de démarrer le moteur pour la première fois, ou s'il n'a pas servi depuis plus de trois mois, les paliers des turbocompresseurs doivent être amorcés. Vérifier que l'alimentation en gaz est fermée, que le commutateur sur le tableau de commande est en position d'arrêt, et que le contact est coupé. Localiser la pompe manuelle semi-rotative, qui se trouve juste devant la pompe à huile (voir Fig. 3). L'actionnement de la pompe amène l'huile du carter jusqu'au bloccylindres au moyen d'une soupape à une voie, mettant ainsi sous pression le systeme de graissage à travers les filtres à huile. Pomper jusqu'à ce que le manomètre indique une pression de l'huile d'environ 35 kPa . Continuer à pomper encore 20 secondes pour s'assurer que l'huile a atteint le turbocompresseur.

batteries (LES batteries perkins sont FOURNIES CHARGEES A SEC. VOIR MANUEL D'INSTALLATION TSL4200)

## AVERTISSEMENT <br> $\triangle$METTRE DES GANTS DE <br> PROTECTION POUR VERIFIER LE NIVEAU D'ELECTROLYTE DE LA BATTERIE. DU GAZ INFLAMMABLE EST PRODUIT PAR LA <br> BATTERIE. NE JAMAIS OPERER A PROXIMITE D'UNE FLAMME NUE.

Contrôler le niveau d'électrolyte dans chacun des éléments des batteries; le niveau doit se situer entre 8 et 16 mm au-dessus des plaques. A l'aide d'un densimètre, vérifier si les batteries sont complètement chargées. La densité de l'électrolyte d'une batterie complètement chargée est de 1,27 à 1,285 pour une température ambiante inférieure à $32^{\circ} \mathrm{C}$. Pour des températures supérieures, la densité sera de 1,24 à 1,255 . Pour faire l'appoint, utiliser exclusivement de l'eau distillée pure, et ne pas oublier de remettre les bouchons en place après le remplissage.
$\left.\begin{array}{|l|l|}\hline \text { AVERTISSEMENT } & \text { NE JAMAIS } \\ \text { BRANCHER UNE }\end{array}\right\}$

REMPLISSAGE DES CIRCUITS DE
REFROIDISSEMENT

## AVERTISSEMENT <br>  LE CIRCUIT DE REFROIDISSEMENT EST SOUS PRESSION. NE PAS DEVISSER LE BOUCHON DU RADIATEUR QUAND LE MOTEUR EST CHAUD. METTRE DES GANTS DE PROTECTION.

Il n'est pas recommandé d'utiliser de l'eau potable étant donné les réactions chimiques qui peuvent provoquer la corrosion et lincrustation du circuit de refroidissement. II est nécessaire d'utiliser une solution d'antigel universel ou d'agent anticorrosion et d'eau. Se reporter à la page 17.


Après linstallation et avant le démarrage initial, retirer le bouchon du radiateur, voir Fig. 4, en le toumant dans te sens inverse des aiguilles d'une montre. Remplir le circuit de refroidissement avec le liquide de refroidissement nécessaire. Si le moteur est équipé de collecteurs d'échappement refroidis à l'eau, il faudra tout d'abord les purger (voir la Section F7 du Manuel d'Atelier). Faire tourner le moteur à vide pendant une minute pour permettre de remplir complètement le circuit. Arrêter le moteur et remplir le circuit jusqu'a 25 mm du haut de la goulotte de remplissage puis remettre le bouchon en place.

## DESCRIPTION

Le tableau de commande est fixé par des supports élastiques sur le côté du moteur, entre les brides du collecteur d'air. Certains instruments existent en deux exemplaires, pour fournir les valeurs des rangées $A$ et $B$ (voir Fig. 5).

1 Intensité de charge de la batterie
2 Température de l'eau de refroidissement rangée ' A '
3 Température de l'huile de graissage rangée ' A '
4 Pression de l'huile de graissage rangée ' $A$ '
5 Vitesse et nombre d'heures de marche
6 Commutateur à clé
7 Porte-fusibles
8 Température de l'eau de refroidissement rangée ' $B$ '
9 Température de l'huile de graissage rangée 'B'
10 Pression de l'huile de graissage rangée ' $B$ '
11 Thermomètre d'échappement (si monté)

Fig. 5

## Thermomètre d'eau de refroidissement

(Fahrenheit/Centigrade) Fig. 6
Dans les conditions normales de marche, la température du liquide de refroidissement doit se situer entre $65^{\circ} \mathrm{C}$ et $85^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}-185^{\circ} \mathrm{F}\right)$. Si la température dépasse $93^{\circ} \mathrm{C}$ ( $200^{\circ} \mathrm{F}$ ) pendant une période prolongée, arrêter le moteur et rechercher la cause. Le moteur ne doit pas non plus être utilisé pendant de longues périodes à une température trop basse.

## Thermomètre d'hulle moteur

(Fahreinheit/Centigrade) Fig. 7
La température de l'huile de graissage doit se situer entre $80^{\circ} \mathrm{C}$ et $90^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}-194^{\circ} \mathrm{F}\right)$ lorsque le moteur est chaud. Si la température s'élève à plus de $115^{\circ} \mathrm{C}$ $\left(240^{\circ} \mathrm{F}\right)$, arrêter immédiatement le moteur et rechercher la cause.

Manomètre de pression d'huile Fig. 8
(pound per square inch/kiloPascal $\times 100$ )
La pression de l'huile doit se situer entre 300 et 350 kPA (45-50 ib/in ${ }^{2}$ ) quand le moteur est chaud. Si la pression chute au-dessous de $200 \mathrm{kPa}\left(30 \mathrm{lb} / \mathrm{in}^{2}\right)$ à des vitesses supérieures au ralenti, arrêter immédiatement le moteur et rechercher la cause.

## Ampèremètre (Ampères) Fig. 9

L'ampèremètre indique le courant de charge des batteries fourni par l'alternateur, ou le courant de décharge de la batterie quand celle-ci n'est pas rechargée.


Fig. 6


Fig. 7


Fig. 9

## Compte-tours et compteur d'heures

(tours par minute $\times 1000$ / heures) Fig. 10
Le compte-tours/compteur d'heures à fonctionnement électrique indique le régime du moteur en tours par minutes, et le nombre réel d'heures de fonctionnement du moteur. L'appareil commence à fonctionner dès que la tension de l'alternateur dépasse 12 V , valeur atteinte dès le ralenti.

## Thermomètre d'échappement

Gamme de température de -20 à $+800^{\circ} \mathrm{C}$
Le thermomètre indique la valeur sde la température de sortie de la turbine. On passe de la rangée A à la rangée $B$ en actionnant le commutateur (1) Fig. 11.
NOTA: Les anciens moteurs peuvent nécessiter une batterie de 9 volts à pile sèche.

Commutateur à clé (à 3 positions)
(Arrêt/marche/démarrage)
Le commutateur à serrure est actionné à la main par une clé séparée dans les positions indiquées (voir Fig. 12) vu face au commutateur.

## Porte-fusibles

Un fusible de 2A est installé pour protéger le tableau de commande. Pour enlever le fusible (1), dévisser son support (2) (voir Fig. 13).


Fig. 12 1016.2


Fig. 13

CONTROLES FI NAUX ET DEMARRAGE INITIAL
Le groupe d'alimentation de gaz doit être conforme au Code IM17 du Gaz Britannique. Voir Fig.1, page 16 du Manuel d'Atellier. D'autre part, la tuyauterie qui va jusqu'ax électrovannes doit être testée à deux fois la pression de service pour s'assurer qu'elle est bien étanche au gaz et pour rectifier d'éventuelles fuites.
AVERTISSEMENT
D'UN MOTEUR A GAZ PEUT ETRE TRES
INANGEREUSE. ETRE PRET A CONTROLER LES
FUITES DE GAZ EN AVAL DES
ELECTROVANNES AUSSITOT QUE LE MOTEUR
DEMARRE, A L'AIDE D'UN LIQUIDE DE
DETECTION DES FUITES. ARRETER LE
MOTEUR ET RECTIFIER LA FUITE.

1 Le démarrage et l'arrêt doivent se faire à vide.
2 Pour la séquence de démarrage et d'arrêt automatique, voir Fig. 14 page 27.
AVERTISSEMENT 1 SI LE MOTEUR NE
APRES DEUX TENTATIVES, FERMER PAS
L'ARRIVEE DU GAZ ET RECHERCHER LA
CAUSE. PURGER LE GAZ AVANT D'ESSAYER
DE REDEMARRER LE MOTEUR. POUR CE
FAIRE, APRES AVOIR FERME L'ARRIVEE DE
GAZ ET LE SYSTEME D'ALLUMAGE, LANCER LE
MOTEUR AVEC LE DEMARREUR PENDANT 30
SECONDES MAXIMUM. CETTE OPERATION
ELIMINE TOUTE ACCUMULATION DE GAZ DU
MOTEUR ET DU SYSTEME D'ECHAPPEMENT.
EN ALTERNATIVE, ON PEUT PURGER LE
SYSTEME AVEC DE L'AIR COMPRIME.
L'OPERATEUR DOIT TOUJOURS ETRE PRET A
ARRETER LE MOTEUR EN CAS DE MAUVAIS
FONCTIONNEMENT, EN FERMANT L'ARRIVEE
DE GAZ OU, EN CAS D'URGENCE, EN
APPUYANT SUR LE BOUTON ROUGE QUI
RESTE HORS CIRCUIT JUSQU'AU
REARMEMENT.

## AVERTISSEMENT

1SI LE MOTEUR NE DEMARRE PAS

[^0]3 Démarrage (manuel)
3.1 Ouvrir l'arrivée de gaz au robinet manuel.
3.2 Appuyer sur le bouton de démarrage/ toumer la clé de contact.
3.3 Le régulateur est sous tension.
3.4 Le démarreur s'enclenche, et commence à tourner. Le temps de purge automatique de 3 secondes: est déterminé par le tableau de commande.
3.5 Le contact étant mis, les électrovannes du gaz s'ouvrent.
3.6 Le moteur démarre, le démarreur se désengage et accélère jusqu'à la vitesse de régime.
3.6.1 Si le moteur ne démarre pas, rechercher la cause parmi les suivantes:
a Pression du gaz élevée ou basse.
b Système d'allumage mis à la terre.
c Le régulateur n'est pas sous tension.
d Vitesse de démarrage trop basse.
3.6.2 Faire une nouvelle tentative en recommençant au point 3.2. ci-dessus.
3.7 Lorsque le moteur tourne, vérifier la pression de l'huile, laisser chauffer l'ensemble du moteur et appliquer la charge.
3.8 Contrôler la condition du moteur à charge totale, la pression de l'huile, les températures du liquide de refroidissement de la chemise et du liquide de refroidissement d'air d'admission.
4 Arrêt
4.1 Enlever la charge, faire tourner le moteur pendant 3 à 5 minutes pour réduire les températures du système de combustion, le bouillonnement localisé du liquide de refroidissement, et pour éviter la carburation de l'huile dans le boîtier du palier du turbocompresseur.
4.2 Arrêter le moteur en mettant hors tension les électrovannes de gaz et le régulateur. NE PAS appuyer sur le bouton d'arrêt rouge pour l'arrêt normal du Moteur. Si le contact est coupé, le circuit restera rempli de gaz et devra être purgé.

Une marche excessive du moteur à la vitesse de régime à vide entraîne une dépression importante dans les cylindres, ce qui produit une consommation élevée d'huile et la formation de dépôts sur les bougies, les soupapes et les pistons.


Fig. 14

This document has been printed from $\mathrm{SPI}^{2}$. Not for Resale

Une liste de contrôle se trouve vers la fin de ce chapitre, pour les groupes électrogènes en service continu. Cette liste doit être utilisée comme guide par les opérateurs et par le personnel d'entretien.
Le programme ci-après décrit certaines des opérations d'entretien indiquées dans les listes de contrôle. Cependant, toutes n'y sont pas détaillées et il convient de se reporter à la section appropriée du Manuel d'Atelier pour celles qui ne le sont pas.
Le programme décrit dans ce chapitre conviendra parfaitement pour un moteur utilisé dans des conditions moyennes. Si votre moteur travaille dans des conditions particulièrement salissantes ou poussiéreuses, un entretien plus fréquent sera nécessaire, en particulier de l'huile de graissage et des filtres à air. Un entretien correct et régulier contribuera à prolonger la durée de vie de votre moteur.

## AVERTISSEMENT



AVANT TOUTE INTERVENTION
D'ENTRETIEN, EN PARTICULIER SUR LES GROUPES ELECTROGENES A DEMARRAGE AUTOMATIQUE, OU LES MOTEURS A DEMARRAGE A DISTANCE, PRENDRE TOUTES LES PRECAUTIONS NECESSAIRES POUR QUE LE MOTEUR NE PUISSE EN AUCUN CAS DEMARRER.

## CONTROLE JOURNALIER NIVEAU D'HUILE DE GRAISSAGE

Le moteur étant arrêté depuis au moins 5 minutes:
(i) Extraire la jauge d'huile et l'essuyer.
(ii) Remettre la jauge en place dans le carter.
(iii) Attendre au moins 5 secondes, puis extraire la jauge et contrôler le niveau d'huile par rapport aux deux repères de la jauge.
(iv) Répéter les opérations (i), (ii) et (iii) au moins deux fois, jusqu'à ce que les lectures soient identiques.
Si le niveau de l'huile se trouve au-dessous du repère supérieur, faire l'appoint avec de d'huile de même qualité que celle déjà utilisée dans le moteur, pour amener le niveau jusqu'au repère supérieur de la jauge.
Toujours remettre le bouchon de remplissage en place immédiatement après l'opération.


NIVEAU DU LIQUIDE DE REFROIDISSEMENT

## AVERTISSEMENT

 LE CIRCUIT DE REFROIDISSEMET EST SOUS PRESSION - NE PAS DEVISSER LE BOUCHON DU RADIATEUR QUAND LE MOTEUR EST CHAUD. METTRE DES GANTS.

Le moteur étant à l'arrêt, retirer le bouchon de remplissage; le niveau du liquide de refroidissement doit se situer à 25 mm (1") au-dessous du bord supérieur de la goulotte de remplissage. Si le niveau est trop bas, compléter avec un mélange d'eau et d'inhibiteur ou d'eau et d'antigel similaire à celui déjà utilisé dans le moteur. Se reporter à la page 7 ou 10 de la Section Caractéristiques du Moteur.

## FUITES

Inspecter visuellement le moteur pour vérifier l'absence de fuites de gaz, d'huile ou de liquide de refroidissement et réparer si nécessaire.

## CONTROLE HEBDOMADAIRE

Traiter les points du CONTROLE JOURNALIER.

## indicateur de colmatage de filtre a air

La section intermédiaire de lindicateur de colmatage ' $A$ ' reste claire tout pendant que le filtre à air est en condition de fonctionnement normale. Lorsque le filtre atteint sa limite de contamination, l'indicateur de colmatage capte la variation de la pression dans le collecteur et la section intermédiaire ' $A$ ' devient rouge. Dans ces conditions, il faut remplacer le filtre à air (voir Manuel de l'Opérateur, Page 37). Une fois que les filtres à air ont été remplacés, réajuster lindicateur en appuyant sur le bouton 'B'. (Voir Fig. 15).

## BATTERIES

## AVERTISSEMENT <br> 4PORTER DES GANTS DE PROTECTION <br> POUR CONTROLER LE NIVEAU <br> D'ELECTROLYTE DANS LA BATTERIE. DU GAZ INFLAMMABLE EST PRODUIT PAR LA BATTERIE. NE PAS OPERER A PROXIMITE D'UNE FLAMME NUE.

Déposer les bouchons et les couvercles de "remplissage rapide" et vérifier le niveau d'électrolyte. II doit se trouver à environ 3 mm au-dessus de la partie supérieure de la plaque. Si le niveau est trop bas, faire l'appoint avec de l'eau distillée pure. Remettre les bouchons en place puis nettoyer et essuyer la partie supérieure de la batterie (voir page 21 pour de plus amples informations).
NOTA: Vérifier la densité (voir Programme d'Entretien).

## RADIATEUR

Si le moteur est utilisé dans des conditions salissantes ou poussiéreuses, s'assurer que les passages d'air du radiateur ne sont pas en train de s'obstruer. lls peuvent être nettoyés en soufflant de l'air comprimé dans la direction opposée à la direction de la circulation normale d'air.

## VIDANGE DE L'EAU DU CARTER D'HUILE (POUR LES MOTEURS FONCTIONNANT AU GAZ DE DECHARGE)

Dévisser le bouchon de vidange du carter d'huile et vidanger l'eau accumulée jusqu'à ce que de l'huile s'écoule. Revisser le bouchon, vérifier le niveau d'huile et compléter avec la quantité d'huile nécessaire.

## MANCHONS CONIQUES DE BLOCAGE FENNER INSTRUCTIONS D'ENTRETIEN

L'expérience montre que les manchons coniques, comme ceux montés dans les poulies du ventilateur et la poulie menée de l'alternateur de la batterie, risquent de se desserrer peu apres leur mise en service. Vérifier le serrage des vis Allen (1) Fig. 16 et, avec une clé à six pans, serrer progressivement et alternativement les vis jusqu'au couple prescrit (voir Réglages des couples de serrage, pages 11-13). Pour des détails complets sur la poulie conique de blocage, se reporter à Section B2 \& U1 du Manuel d'Atelier. Remonter toutes les protections déposées avant de remettre le moteur en marche (voir Fig. 16).


MOTEURS NEUFS OU REVISES
Il est impératif d'effectuer les opérations d'entretien suivantes après les 100 premières heures de marche.

## BRIDES ET FIXATIONS

Vérifier le couple de serrage de tous les dispositifs de fixation externes, y compris les brides du collecteur d'échappement et du turbocompresseur. Serrer tous les colliers de flexibles et les raccords de tuyaux.

EQUILIBRER LES PONTS DE SOUPAPES ET VERIFIER LES JEUX DES SOUPAPES (voir page 39).

## TURBOCOMPRESSEURS

Si le moteur a été révisé et qu'un joint de filtre a été monté sur l'arrivée d'huile du turbocompresseur, il faut le déposer et le remplacer par un joint normal. Voir Bulletin d'Entretien 301 (révisé) et 1.

POUR LES MOTEURS FONCTIONNANT AU BIOGAZ, AU GAZ DE DECHARGE, ETC. bOUGIES
Nettoyer et régler les écartements des bougies, selon les indications de la Section N9, etc., du Manuel d'Atelier.


HUILE MOTEUR ET FILTRES VISSABLES, EGALEMENT FILTRE A HUILE CENTRIFUGE (S'IL EST MONTE)
Remplacer l'huile moteur et les filtres jetables (voir page 34), nettoyer le filtre centrifuge (voir page 33).

COURROIE D'ENTRAINEMENT DEL'ALTERNATEUR

AVERTISSEMENT
DEBRANCHER LES BATTERIES OU TOUT AUTRE DISPOSITIF DE DEMARRAGE.

Déposer la petite protection grillagée (1) autour de l'alternateur. La courroie crantée utilisée pour entraîner l'alternateur utilise l'engagement de la dent pour transmettre la charge. Elle n'exige pas de précharge, mais une légère tension initiale est toutefois nécessaire pour assurer son enroulement correct autour des poulies. Une pression légère exercée à mi-distance des deux poulies doit fléchir la courroie d'environ $1,5 \mathrm{~mm}$ (voir Fig. 17). Remonter ensuite la protection.

HUILE MOTEUR ET FILTRES
Changer l'huile moteur et les filtres après les 500 premières heures de marche.

PALIERS ET COURROIES DE VENTILATEUR

## AVERTISSEMENT



DEBRANCHER LES batteries ou tout

## AUTRE DISPOSITIF DE DEMARRAGE.

Déposer la protection en grillage autour des courroies du ventilateur, graisser les paliers des poulies du ventilateur et de tension Fig. 18, avec de la graisse au lithium à haut point de fusion (par exemple Shell Alvania R.A.).
Contrôler la tension et lusure des courroies du ventilateur. A l'aide d'une balance à ressort et d'une règle, ou d'un indicateur de tension de courroie, vérifier que la force correspond aux valeurs en kgf (lbf) indiquées ci-dessous, pour une flexion correcte de la courroie. Voir Fig. 18.

| Flexion | Force en kg | Force en Lb |
| :---: | :---: | :---: |
| 11 mm | $3-4,3$ | $6,67-9,47$ |

Si les courroies du ventilateur sont usagées, elles doivent être remplacées par un jeu complet. II NE FAUT PAS remplacer des courroies individuelles.

Si le réglage s'avère nécessaire, desserrer le pivot de la poulie de tension et les vis de réglage, et actionner le levier de la poulie de tension.
Tirer vers l'extérieur pour tendre les courroies:et vers lintérieur pour détendre les courroies.
Pour obtenir la tension correcte, mesurer la flexion à mi-distance entre la poulie du ventilateur et la: poulie du vilebrequin, lorsque la force indiquée ci-dessus est appliquée.
Pour appliquer la force, placer une règle en travers de la largeur des courroies et attacher une balance à ressort, comme indiqué dans la Fig. 18, puis tirer sur la balance à ressort jusqu'à ce que la force désirée soit atteinte. Mesurer alors la flexion de la courroie. Régler la position du levier de la poulie de tension jusqu'à ce que la force exercée sur la balance à ressort et la flexion de la courroie correspondent aux valeurs fournies.

## Légende

(Fig. 18)
1 Force
2 Flexion


Fig. 18

## AVERTISSEMENT



DEBRANCHER LES
batteries outout AUTRE DISPOSITIF DE DEMARRAGE. TOUJOURS PORTER DES LUNETTES DE PROTECTION ET DES GANTS EN UTILISANT DE L'AIR COMPRIME OU DES DETERGENTS.

RENIFLARD DE CARTER (MODELE AMELIORE) MONTE SUR LES MOTEURS RECENTS
Le reniflard de carter est monté latéralement sur le boitier du thermostat Fig. 19 et est relié au moteur par un tuyau flexiblede rallonge et un coude fixé sur l'avant du carter de distribution (voir Fig. 20).
Pour nettoyer le reniflard, déposer le couvercle supérieur et extraire les deux tamis métalliques et les rincer à fond avec un détergent approprié. Les secouer pour les sécher au maximum, puis finir de les sécher à l'air comprimé. Remonter les éléments dans le boîtier du reniflard et remettre le couvercle en place en le fixant solidement en position.
NOTA: En remettant le couvercle en place, vérifier que le joint d'étanchéité est en bon état et que le couvercle est bien enclenché sur son goujon.


Fig. 20

## AVERTISSEMENT



DEBRANCHER LES batteries outout AUTRE DISPOSITIF DE DEMARRAGE. TOUJOURS PORTER DES GANTS DE PROTECTION.

POUR UNE PERIODICITE DE REMPLACEMENT DE L'HUILE PLUS LONGUE (AVEC PROGRAMME D'ANALYSE DE L'HUILE) SE REPORTER AUX PAGES 14-16 SUR LES MOTEURS FONCTIONNANT AU BIOGAZ ET AUTRES GAZ (DIFFERENTS DU GAZ NATUREL BRITANNIQUE) NETTOYAGE DU FILTRE CENTRIFUGE D'HUILE DE GRAISSAGE.
Arrêter le moteur et laisser le temps à l'huile de graissage de retourner dans le carter d'huile.
1 Desserrer le collier de sécurité (1) dévisser l'écrou du couvercle et soulever le couvercle (A). (Voir Fig. 21).

2 Déposer l'ensemble rotor (B) après avoir laissé l'huile s'écouler des tuyères. Le rotor doit être extrait et remonté sur l'axe avec beaucoup de précaution pour ne pas endommager les coussinets.
3 Fixer le rotor dans l'outil de démontage T6253/ 292. Dévisser l'écrou (3) de la cloche du rotor et séparer la cloche du corps.
4 Retirer le tube central (4) avec l'outil d'extraction T6253/293 et le nettoyer.
5 Enlever la boue à Pintérieur de la cloche du rotor à l'aide d'une spatule et essuyer à fond. Vérifier que tous les composants du rotor sont propres et exempts de dépôts ou impuretés avant de réassembler le rotor. Si cette précaution n'est pas respectée, le rotor pourrait être déséquilibré, ce qui accélérerait l'usure de ses coussinets.
6 Nettoyer les tuyères avec un fil de laiton. Examiner le joint torique (5) et le remplacer s'il est endommagé.
7 Réassembler entièrement le rotor et serrer l'écrou supérieur. IMPORTANT: Vérifier que la cloche et le corps du rotor sont toujours associés par le numéro de référence d'équilibrage et la position de la goupille.
NE PAS ECHANGER LES CLOCHES DES ROTORS.
8 Examiner les portées de l'axe. Si elles sont usées ou endommagées, remplacer l'axe avec le corps complet.


9
Réassembler entièrement le filtre en s'assurant que le rotor tourne librement, puis remonter le couvercle. Serrer Pécrou du couvercle et fixer le collier de sécurité. Le collier doit être serré à fond et le filtre ne doit jamais être utilisé sans le collier en place.
Une fois le moteur en marche, vérifier que les joints ne fuient pas et l'absence de vibrations excessives.

NOTA: II est conseillé d'effectuer une analyse de thuile à intervalles réguliers pour s'assurer que la périodicité des interventions d'entretien est satisfaisante.

REMPLACEMENT DE L'HUILE MOTEUR ET DES FILTRES A HUILE (TYPE STANDARD VISSABLE)

## AVERTISSEMENT <br>  <br> DEBRANCHER LES batteries ou TOUT AUTRE DISPOSITIF DE DEMARRAGE.

 TOUJOURS PORTER DES GANTS DE PROTECTION.Moteur à l'arrêt, placer un récipient approprié de contenance comprise entre 150 et 250 litres sous le bouchon de vidange. Enlever le bouchon de vidange et laisser l'huile s'écouler. II est préférable d'effectuer cette opération pendant que le moteur est encore chaud, dans la mesure où l'huile est plus fluide et se vidange plus rapidement. Pendant la vidange, déposer les trois filtres à huile de chaque rangée en les dévissant dans le sens inverse des aiguilles d'une montre avec une clé à sangle, voir Fig. 22.
NOTA: La dépose des filtres à huile entrainera un écoulement d'huile des têtes de filtre, il est donc recommandé de placer un récipient d'une contenance d'au moins 5 litres sous chaque tête de filtre avant la dépose. Nettoyer avec soin les faces d'étanchéité et les bossages filetés de la tête de filtre. Enduire d'huile moteur le joint caoutchouc prisonnier et visser soigneusement chaque nouveau filtre sur la tête de filtre, à la main et sans forcer.
Utiliser uniquement des filtres à huile Perkins véritables. L'utilisation de filtres différents pourrait sérieusement endommager le moteur.
Remonter le bouchon de vidange et remplir le moteur avec la qualité d'huile neuve recommandée (voir pages 11-13). Vérifier que l'arrivée de gaz est fermée, que linterrupteur sur le tableau de commande est en position d'arrêt, et que le contact est mis à la terre pour éviter l'allumage du moteur. Tourner le commutateur à clé en position de marche et faire tourner le moteur avec le démarreur jusqu'à ce que le manomètre indique une pression d'huile d'environ $0,4 \mathrm{~kg} / \mathrm{cm}^{2}$.
Continuer à faire tourner le moteur pendant encore 10 secondes, pour s'assurer que l'huile a atteint des paliers des turbocompresseurs.


Se reporter à la page 20 pour les instructions d'amorçage avec une pompe semi-rotative.
Arrêter le moteur et l'inspecter pour vérifier l'absence de fuites d'huile. Faire l'appoint si nécessaire.

## AVERTISSEMENT <br>  DEBRANCHER LES BATTERIES OU TOUT <br> AUTRE DISPOSITIF DE DEMARRAGE. TOUJOURS PORTER DES GANTS DE PROTECTION.

## REMPLACEMENT DES FILTRES A HUILE COMMUTABLES OPTIONNELS

Les filtres à huile spéciaux à deux cartouches sont normalement destinés aux moteurs utilisés en service continu, ou lorsque les exigences de service rendent impossible l'arrêt du moteur pour remplacer les filtres. Pour cette raison, la tête de filtre est équipée d'un robinet à 3 voies commutable qui permet de remplacer les cartouches, l'une après l'autre, pendant que le moteur continue à tourner. Ces filtres sont normalement montés sur le moteur, mais ils peuvent également être montés à distance et reliés au moteur par des flexibles.

NOTA: Si les flexibles de liaison au filtre sont débranchés pour une raison quelconque, il est impératif quilis soient rebranchés correctement pour éviter que de l'huile non filtrée pénètre dans le moteur. Voir Fig. 24, page 36. Le non remplacement des filltres en temps utile peut également entraîner des problèmes dus à l'huile non filtrée.

## REMPLACEMENT DES CARTOUCHES

## FILTRANTES AVEC LE MOTEUR A L'ARRET

Il suffit de dévisser les cartouches avec une clé à sangle, comme indiqué dans la Fig. 23, sans toucher au robinet de commutation, dans la mesure où le circuit n'est pas sous pression quand le moteur est à l'arrêt. Essuyer le dessous de la tête de filtre et enduire d'huile propre les joints d'étanchéité des cartouches neuves, avant de les visser à la main. Serrer les cartouches de trois quarts de tour au plus, après le contact du joint sur la tête de filtre. Vérifier l'absence de fuites après le redémarrage du moteur.

Fig. 23

## AVERTISSEMENT

 REDUIRE LA
VITESSE DU MOTEUR AU RALENTI LORSQU'ON CHANGE LES FILTRES PENDANT QUE LE MOTEUR TOURNE.

## REMPLACEMENT DES CARTOUCHES DU FILTRE SANS ARRETER LE MOTEUR

La position normale du robinet de commutation est indiquée sur l'axe de la valve par un 'T'à l'envers dont la jambe est tournée vers le haut lorsque les deux cartouches sont en circulation. En tournant le robinet avec la clé fournie pour que la jambe du 'T' soit dirigée à gauche, la cartouche droite est mise hors circuit et peut alors être remplacée par une cartouche neuve qui devra aussi être remplie d'huile propre avant d'être remontée. En toumant le robinet pour que la jambe du 'T' soit dirigée à droite, le filtre de gauche est mis hors circuit et la cartouche peut alors être remplacée. Ramener ensuite le robinet en position originale pour remettre les deux cartouches du filtre en circuit. Vérifier l'absence de fuites.

NOTA: Prévoir un petit écoulement d"huile du filtre au moment du remplacement des cartouches, et placer un récipient d'environ 5 litres (1 gallon) sous le filtre.

## Légende

(Fig. 24)
1 Remplacement cartouche droite
2 Marche normale
3 Remplacement cartouche gauche
4 Huile sale vers le filtre
5 Huile propre vers le moteur


Fig. 24

## AVERTISSEMENT <br> $A$DEBRANCHER LES BATTERIES OU TOUT AUTRE DISPOSITIF DE DEMARRAGE DU MOTEUR.

## REMPLACEMENT DU FILTRE A AIR (VOIR SECTION A1 DU MANUEL D'ENTRETIEN) STANDARD

Dévisser l'écrou à oreilles et enlever le couvercle (3) du corps de filtre à air, puis sortir avec précaution l'élément papier (1). Pour l'entretien de l'élément, se reporter aux Instructions Générales d'Entretien ciaprès. Quand toutes les opérations d'entretien sont terminées, monter l'élément nettoyé ou neuf dans le corps de filtre. Remonter le couvercle en veillant à bien l'emboîter sur le corps de filtre avant de serrer l'écrou à oreilles. Vérifier et resserrer tous les raccords du filtre à air avant de remettre le moteur en marche (voir Fig. 25).

## SERVICE SEVERE

Le filtre à air pour service sévère comporte un préfiltre cyclone (4) monté sur l'orifice d'entrée d'air du filtre à la place de la protection grillagée (2). Pour nettoyer le cyclone, le déposer du corps de filtre et chasser à l'air comprimé la saleté accumulée à l'intérieur. Le remplacement de l'élément papier n'est pas affecté par le montage du préfiltre cyclone.

## INSTRUCTIONS GENERALES D'ENTRETIEN

Les procédures d'entretien comprennent le nettoyage ou le remplacement de l'élément papier, le nettoyage du corps de filtre et la vérification du serrage et de l'étanchéité de tous les raccords de tuyauteries et durits entre la sortie du filtre et l'admission du turbocompresseur.

## ENTRETIEN DE L'ELEMENT DU FILTRE

Nettoyer l'extérieur du corps de filtre et extraire l'élément avec précaution. Vérifier l'absence d'accumulation inhabituelle de poussière sur la "face air propre" de l'élément et la paroi côté sortie du corps de filtre.
a Les accumulations de poussière sur la face 'air propre' de l'élément indiquent généralement une rupture du matériau filtrant. L'élément doit être immédiatement remplacé.

b L'accumulation de poussière sur la paroi côté entrée du corps de filtre est généralement causée par des joints non étanches et/ou des faces d'étanchéité en mauvais état. Dans ce cas, les joints défectueux doivent être remplacés et les faces d'étanchéité doivent être réparées avant de remettre le filtre en service.

## AVERTISSEMENT <br> REMPLACER TOUT ELEMENT <br> ENDOMMAGE. <br> NE JAMAIS CHASSER LA POUSSIERE DU CORPS DE FILTRE PAR 'SOUFFLAGE' CAR CECI POURRAIT INTRODUIRE DE LA POUSSIERE DANS LE MOTEUR. UTILISER PLUTOT UN CHIFFON PROPRE MOUILLE. NE HUILEZ PAS L'ELEMENT. <br> TOUJOURS PORTER UNE PROTECTION POUR LES YEUX EN UTILISANT L'AIR COMPRIME.

## NETTOYAGE DE L'ELEMENT

Si l'élément du filtre est en bon état, avec une légère contamination de poussière sur la face extérieure et que l'indicateur de colmatage du filtre à air (voir Page 28) n'a pas été déclenché, l'élément peut être nettoyé avec un aspirateur ou à l'air comprimé.

## RENIFLARD EN CIRCUIT FERME

Les séparateurs du reniflard en circuit fermé (1) sont montés latéralement de chaque côté du carter de distribution et sont reliés à l'admission du mélangeur du carburateur par l'intermédiaire de la soupape de reniflard (2). Pour nettoyer le séparateur du reniflard, extraire l'ensemble complet du moteur. (Fig. 26)
Desserrer les brides de fixation et enlever le couvercle supérieur (4) du corps de filtre. Enlever l'élément en mousse (5) et vérifier le niveau de saturation des résidus l'huile. Le rincer à fond dans un solvant approprié, éliminer l'excès de solvant en secouant l'élément et le sécher à l'air comprimé. Nettoyer tous les dépôts de résidus d'huile du corps de filtre, puis réassembler les éléments et remonter l'ensemble dans le moteur.
La soupape de reniflard (2) est montée sur le côté volant du moteur, directement sous le filtre à air. Pour la démonter, desserrer les brides des tuyaux (Fig. 27) et extraire la soupape du collecteur de soupape. Laver le reniflard à fond avec un solvant approprié, en faisant particulièrement attention aux dépôts sur la surface intérieure du reniflard. Sécher le plus possible en secouant, puis finir de sécher à l'air comprimé. Avant le remontage, vérifier que les graisseurs (A) situé à la base des deux soupapes de reniflard sont remplis d'huile moteur propre Fig. 27.



EQUILIBRAGE DES PONTS DE SOUPAPES ET REGLAGE DES JEUX DE SOUPAPES

NOTA: Les ponts de soupapes doivent être réglés avant de régler les jeux de soupapes.

## AVERTISSEMENT <br>  DEBRANCHER LES batteries et tout AUTRE DISPOSITIF DE DEMARRAGE.

Dévisser les quatre vis (1) du cache-culbuteur (2), déposer le cache-culbuteur puis décoller et mettre au rebut le joint usagé (3). Extraire le tube (4) de la bougie de la douille de la bougie (Fig. 29).
Pour équilibrer les ponts de soupapes, les soupapes concernées doivent être en bascule, suivant le tableau ci-dessous.
Pour permettre au moteur de tourner pendant que les batteries sont débranchées, un dispositif de rotation spécial (SE253) peut être monté dans l'orifice du démarreur de secours, dans le carter de volant, voir Fig. 30. Avec une clé à cliquet équipée d'une douille, appuyer sur le boulon à ressort jusqu'à ce que le pignon s'engage sur la couronne du volant et faire tourner le moteur jusqu'à la position désirée.
Si les soupapes à mettre en bascule sont fermées, faire tourner le moteur d'un tour, ceci les amènera en position de bascule. Le carter de volant est équipé d'un orifice d'inspection situé juste sous le turbocompresseur, à travers lequel les repères gravés sur le volant peuvent être alignés sur lindex situé dans le carter du volant Fig. 31.
Le volant est marqué: T.D.C. (Point Mort Haut)

| 4012TESI | 4016TESI |
| :---: | :---: |
| A1-A6 | A1-A8 |
| A5-A2 | A3-A6 |
| A3-A4 | A7-A2 |
| B1-B6 | A5-A4 |
| B5-B2 | B1-B8 |
| B3-B4 | B3-B6 |
|  | B7-B2 |
|  | B5-B4 |



EQUILIBRAGE DES PONTS DE SOUPAPES


Après avoir tourné le moteur dans la position correcte, vérifier que les culbuteurs d'admission et d'échappement ont du jeu avant de passer à l'opération suivante. Desserrer le contre-écrou (1) de chaque pont de soupape, dévisser la vis de réglage (2) jusqu'à ce que la partie fixe du pont de soupape soit en appui sur la soupape correspondante, puis en appuyant d'une main sur l'arête supérieure visser la vis de réglage jusqu'à ce qu'elle touche la soupape, équilibrant ainsi la levée de soupapes. Rebloquer le contre-écrou sans bouger la vis de réglage (voir Fig. 32).

## REAJUSTAGE DES JEUX DE SOUPAPES

Les deux ponts de soupapes étant équilibrés, vérifier le jeu des soupapes d'admission et d'échappement de $0,4 \mathrm{~mm}$ avec une jauge d'épaisseur (1). Si un réglage est nécessaire, desserrer le contre-écrou (2) et régler le jeu avec la vis de réglage (3).
Serrer le contre-écrou sans bouger la vis de réglage (voir Fig. 33). La jauge doit maintenant pouvoir coulisser avec un ajustement gras entre le culbuteur et le pont, ce qui donne le jeu correct. Remonter le cache-culbuteur avec un joint neuf.


## P.M.H.

A1 et A6
B1 et B6
A2 et A5
B 2 et B5
A3 et A4
B3 et B4
A1 et A6
B 1 et B 6
A2 et A5
B2 et B5
A3 et A4
B3 et B4

SOUPAPES EN BASCULE SUR LE CYLINDRE N ${ }^{\circ}$

REGLER LE PONT DES

## SOUPAPES

ET LE JEU DES SOUPAPES SUR LE CYLINDRE ${ }^{\circ}$

A2
B5
B2
A4
A3
B3
B4
A1
A6
B6
B1
A5
A2
B2
B5
A3
A4
B4

MOTEUR 4016TESI

SOUPAPES EN BASCULE
P.M.H.

A1 \& A8 B1 \& B8
A3 \& A6
$B 3$ \& $B 6$
$A 7 \& A 2$
$B 7 \& B 2$
A5 \& A4
B5 \& B4
A1 \& A8 SUR LE CYLINDRE ${ }^{\circ}$

A8
B8
A6
B6
A2
B2
A4
B4
A1
B1
A3
B3
A7
B7
A5
B5
$A 3 \& A 6$
B3 \& B6
$A 7 \& A 2$
$B 7$ \& B2
A5 \& A4
B5 \& B4

## REGLER LE PONT DES

 SOUPAPESET LE JEU DES SOUPAPES SUR LE CYLINDRE ${ }^{\circ}$ A1
B1
A3
B3
A7
B7
A5
B5
A8
B8A6B6A2

B2
A4
B4

GAZ NATUREL BRITANNIQUE, BIOGAZ ET AUTRES GAZ
LISTE DE CONTROLE POUR SERVICE CONTINU (MOTEURS TOURNANT A 1500 TR/MIN. EN FONCTIONNEMENT NORMAL ET INTERVALLE STANDARD DE REMPLACEMENT DE L'HUILE))

| ENTRETIEN SERVICE CONTINU | OPERATIONS A EFFECTUER |
| :--- | :--- |


|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | A | B | C | D | E | F | G |
| SYSTEME | OPERATION | DESCRIPTION |  | 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 4 <br> 0 <br> 0 <br> 0 |  |  | TOUTES LES 1000 HEURES |  |  |  |
| Graissage | Vérifier <br> Remplacer <br> Nettoyer <br> Remplacer | Fuites et pression de lhuile <br> Niveau de l'huile moteur <br> Filtres plein débit (nomnaux ou commutables) <br> Huile moteur <br> Reniflard de carter (et filtre à huile centrifuge, si monté) <br> Reniflard de carter circuit fermé <br> Eléments séparateur reniflard de carter circuit fermé |  |  |  |  | ! | $\stackrel{+}{\bullet}$ | $\stackrel{\text { - }}{\bullet}$ | - |
| Refroidissement | Vérífier <br> Remplacer Gralsser | Libre passage d'air dans le radiateur <br> Fonctionnement du radiateur du liquide de <br> refroidissement <br> Absence de fuite sur flexibles et raccords <br> Niveau de liquide de refroidissement et température de service <br> Concentration drantigel et dinnhibiteur <br> Etat et tension des courroies <br> Courroies de ventilateur et d'alternateur <br> Pallers de la poulie de tension ot du moyeu du ventilateur | - |  |  |  |  |  |  | $\bullet$ $\bullet$ $\vdots$ |
|  | Remplacer Nettoyer | Liquide de refroidissement Circuit de refroidissement | TOUS LES 12 MOIS |  |  |  |  |  |  |  |
| Air d'admission | Vérifier <br> Remplacer | Absence de fuites Passage de l'air dans le filtre à air Tuyaux et raccords Elément du filtre à air | - |  | - | - | $\bullet$ | $\stackrel{-}{-}$ | * | - |
| Gaz | Vérifier <br> Vérifiar <br> Vérifler <br> Renouveler <br> Vérifier <br> Nettoyer <br> Régler <br> Remplacer | Absence de tuites <br> Timonerie du régulateur <br> Conduites et raccords de gaz <br> Diaphragme dans le régulateur <br> Câblage (y compris câble haute tension, renouveler si nécessalre) <br> Bougies (rétablissement) <br> Ponts de soupapes et soupapes <br> 100 premiàres heures puls <br> Bougies |  | $\cdots$ |  <br>  <br>  <br>  <br>  <br>  <br> . |  |  |  |  | $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ |
| Echappement | Verifier <br> Nettoyer Vérifier | Absence de fuites Passage de l'air dans Péchappement Roue at diffuseur turbocompresseur Jeux des paliers du turbocompresseur | - | $\bullet$ | - | - | - | $\stackrel{\text { - }}{\bullet}$ | $\stackrel{\text { - }}{ }$ | $\stackrel{\rightharpoonup}{\bullet}$ |
| Moteur | Vérifier <br> Vérifier <br> Vérifler <br> Réviser <br> Rebaguer <br> Rêviser | Manchon conique de blocage Fenner ( 50 premières heures) <br> Amortisseur de vibrations <br> Supports du moteur <br> Culasses <br> Piston (si nécessaire) <br> Moteur (pistons neufs, chemises, etc.) |  |  |  |  |  | $\stackrel{-}{\bullet}$ | $\stackrel{\bullet}{\bullet}$ | - |
| Electrique | Vérifier | Système charge batterie, système drallumage Niveau d'électrolyte de la batterie, densité Etat et tension de la courroie Capteurs magnétiques (nettoyage et rétablissement) Interrupteurs et alarmes de protection Bomes et boulons du support de démarreur |  |  | * | - |  |  | $\stackrel{\bullet}{\bullet}$ | $:$ |

[^1]trols mois pour le serrage et l'absence de fuites.

* Apres 500 premieres heures, puis toutes les 1000 heures pour le Gaz Naturel Britannlque. Pour le biogaz et autres gaz, après les 250 premières heures puis
toutes les 400 heures.
Nettoyer aprés tes 500 premières heures, puis toutes les 1000 heures pour le Gaz Naturel Britannique. Pour le blogaz et autres gaz, apres les 250 premieres heures puls toutes les 400 heures. Remplacer toutes les 2000 heures pour le Gaz Natural Britannique et toutes les 1000 heures pour le Blogaz et les autres gaz. + Inspaction générale après les 12.000 premières heures pour te Gaz Natural Britannique. Pour le Biogaz et autres gaz après les 6000 premières heures, et verifier les joints dhulle avant at arriere du vilebrequin.
A Revision complete apres les 20.000 premières heures pour le Gaz Naturel Eritannique, apres les 12.000 premleres heures pour le biogaz et autres gaz * Sulvant ce qui survient en pramier.

NOTA: Pour les moteurs fonctionnant au gaz de décharge, vldanger leau du carter d'hulle toutes les semaines.

GAZ NATUREL BRITANNIQUE
LISTE DE CONTROLE POUR SERVICE CONTINU (MOTEURS TOURNANT A 1500 TR/MIN. EN FONCTIONNEMENT NORMAL ET INTERVALLE PROLONGE DE REMPLACEMENT DE L'HUILE)

| ENTRETIEN SERVICE CONTINU |  |  | OPERATIONS A EFFECTUER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | A | B | C | D | E | F | G |
| SYSTEME | OPERATION | DESCRIPTION |  | 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 3 <br> 9 <br> 0 <br> 0 <br> 0 |  | YOUTES LES 500 HEURES* |  |  |  |  |
| Graissage | Vérifier <br> Remplacer <br> Nettoyer <br> Remplacer | Fuites et pression de l'huile <br> Niveau de l'huile moteur <br> Filtres plein débit (normaux ou commutables) <br> Huile moteur <br> Reniflard de carter (et fiftre à huile centrifuge, si monté) <br> Renillard de carter circuit fermé <br> Eléments séparateur reniflard de carter circuit fermé |  | $\bullet$ |  |  |  |  | ! | : |
| Refroidissement | Vérifier <br> Remplacer Graisser <br> Remplacer Nettoyer | Libre passage d'air dans le radiateur <br> Fonctionnement du radiateur du liquide de refroidissement Absence de fuite sur flexibles et raccords Niveau de liquide de refroidissement et température de service Concentration d'antigel et d'inhibiteur Etat et tension des courroies Courroies de ventilateur et d’alternateur Paliers de la poulie de tension et du moyeu du ventilateur <br> Liquide de refroidissement Circuit de refroidissement | * | - | - |  |  |  |  | $!$ |
|  |  |  | TOUS LES 12 MOIS |  |  |  |  |  |  |  |
| Air d'admission | Vérifier <br> Remplacer | Absence de fuites <br> Passage de lair dans le filtre à air Tuyaux et raccords Elément du filtre à air | - |  | $\bullet$ | - | $\stackrel{\square}{\bullet}$ | $\stackrel{-}{\bullet}$ | $\stackrel{\rightharpoonup}{\bullet}$ | $\stackrel{\square}{\bullet}$ |
| Gaz | Vérifler <br> Vérifier <br> Vérifiler <br> Renouveler <br> Vérifier <br> Nettoyer <br> Régler | Absence de fuites <br> Timonerie du régulateur <br> Conduites et raccords de gaz <br> Diaphragme dans le régulateur <br> Cablage (y compris cáble haute tension, renouveler si nécessaire) <br> Bougies (rétablissement) <br> Ponts de soupapes et soupapes 100 premières heures puis | - | - | - |  |  |  | $\stackrel{\bullet}{\bullet}$ | - |
|  | Remplacer | Bougies | TOUTES LES 2000 HEURES |  |  |  |  |  |  |  |
| Echappement | Vérifier <br> Nettoyer Vérifier | Absence de fultes Passage de l'air dans l'échappement Roue et diffuseur turbocompresseur Jeux des paliers du turbocompresseur | - | - | $\bullet$ | - | - | $\stackrel{\text { - }}{\bullet}$ | $\stackrel{-}{-}$ | $\stackrel{\square}{\bullet}$ |
| Moteur | Vérifier <br> Vérifier <br> Vérifier <br> Réviser <br> Rebaguer <br> Réviser | Manchon conique de blocage Fenner ( 50 premières heures) <br> Amortisseur de vibrations <br> Supports du moteur <br> Culasses <br> Piston (si nécessaire) <br> Moteur (pistons neuts, chamises, etc.) |  |  |  |  |  | - | $\stackrel{\bullet}{\bullet}$ | : |
| Electrique | Vérifier | Système charge batterie, système d̛allumage <br> Niveau d'électrolyte de la batterie, densité <br> Etat et tension de la courrole <br> Capteurs magnétiques (nettoyage et rétablissement) <br> Internupteurs et alarmes de protection <br> Boulons et bomes du support de démarreur |  |  | - | $\stackrel{\square}{\bullet}$ |  | : | $\bullet$ | ! |

NOTA: Tous les boulons, colliers de durits, bomes électriques, raccords de tuyauterie et joints doivent être vérifiés après les 100 premières heures puis tous les trois mois pour le serrage et l'absence de fuites.
$\star$ Remplacer après les 500 premières heures, puis toutes les 1000 heures, jusqu'à ce que l'intervalle prolonge de vidange de l'huile soit établi, ce qui dépend du résultat des analyses (voir pages 13-15).

- Vérifier aussi les joints d'huile avant et anière du vilebrequin.
* Suivant ce qui survient en premier.

This document has been printed from SPI². Not for Resale

PROCEDURES D'ENTRETIEN

BIOGAZ ET AUTRES GAZ (AUTRES QUE LE GAZ NATUREL BRITANNIQUE)
LISTE DE CONTROLE POUR SERVICE CONTINU (MOTEURS TOURNANT A 1500 TR/MIN. EN
FONCTIONNEMENT NORMAL ET INTERVALLE PROLONGE DE REMPLACEMENT DE L'HUILE)

| ENTRETIEN SERVICE CONTINU |  |  | OPERATIONS A EFFECTUER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | A | $B$ | C | D | E | $F$ | G |
| SYSTEME | OPERATION | DESCRIPTION |  |  | $\begin{aligned} & \text { TOUTES LES SEMAINES/50 } \\ & \text { HEURES * } \end{aligned}$ | *SEYOBH OOt SE7 SE1NOL | TOUTES LES 1000 HEURES |  |  |  |
| Graissage | Vérifier <br> Remplacer <br> Nettoyer <br> Remplacer <br> Nettoyer <br> Vérifier | Fuites et pression de l'huile <br> Niveau de l'huile moteur <br> Filtre plein débit <br> Huile moteur <br> Reniflard de carter <br> Rentilard de carter circuit fermé <br> Eléments séparateur reniflard de carter circuit fermé <br> Filtre à huile de graissage centrifuge <br> Après les 250 premières heures puis - <br> Joints d'huile vilebrequin avant et arrière | $\bullet$ $\bullet$ | $\stackrel{\square}{\bullet}$ | - | $\stackrel{\star}{*}$ | : | $\stackrel{\text { - }}{\bullet}$ | $\stackrel{+}{\bullet}$ | $\stackrel{\text { - }}{\bullet}$ |
|  |  |  |  |  | UTE | 5 | H | RE |  |  |
|  |  |  |  |  |  |  |  |  | - | - |
| Refroidissement | Vérifier <br> Remplacer Graisser <br> Remplacer Nettoyer | Libre passage d'air dans le radiateur Fonctionnement du radiateur du liquide de refroidissement <br> Absence de fuite sur flexibles et raccords Niveau de liquide de refroidissement et température de service <br> Concentration of antigel et ofinhibiteur <br> Etat et tension des courroies <br> Courroles de ventilateur et d'altemateur <br> Paliers de la poulie de tension et du moyeu du ventilateur <br> Lquide de refroidissement Circuit de refroidissement | * | - |  |  |  |  | $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ | $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ |
|  |  |  | TOUS LES 12 MOIS |  |  |  |  |  |  |  |
| Air d'admission | Vérifier <br> Remplacer | Absence de fuites Passage de l'alr dans le filtre à air Tuyaux et raccords Elément du filtre à alr | - |  | - | - | : | - | - | $\bullet$ |
| Gaz | Vérifier <br> Véritier <br> Vérifier <br> Renourveler <br> Vérifier <br> Nettoyer <br> Régler <br> Remplacer | Absence de fultes <br> Timonerie du ségulateur <br> Conduites et raccords de gaz <br> Diaphragme dans le régulateur <br> Cablage (y compris calble haute tension, renouveler si nécessaire) <br> Bougles (rétablissement) <br> 250 premières heures puis <br> Ponts de soupapes et soupapes <br> 100 promières heures puis <br> Bougies |  | ${ }^{\bullet}$ | - |  | - | $\bullet$ $\bullet$ $\bullet$ $\bullet$ | $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ | $\stackrel{\square}{\bullet}$ |
| Echappement | Vérifier <br> Nettoyer Véritier | Absence de fuites Passage de l'air dans léchappement Roue at diffuseur turbocompresseur Jaux des paliers du turbocompresseur | - | - | - | - | - | $\stackrel{\text { * }}{ }$ | - | $\stackrel{-}{\bullet}$ |
| Moteur | Vérifier <br> Vérifier <br> Vérifier <br> Réviser <br> Rebaguer <br> Réviser | Manchon conique de blocage Fenner <br> ( 50 pramières heures) <br> Amortisseur de vibrations <br> Supports du moteur <br> Culasses <br> Piston (si nécessaire) <br> Moteur (pistons neufs, chemises, etc. |  |  |  |  |  | $\stackrel{\bullet}{\bullet}$ | $\stackrel{-}{\bullet}$ | $\stackrel{*}{*}$ |
| Electrique | Vérifier | Système charge batterie, système d'aliumage <br> Niveau d'electrolyte de la batterie, densité <br> Etat et tension de la courroie <br> Capteurs magnétuques (nettoyage et rétablissement) <br> Interrupteurs et alames de protection <br> Boulons et bornes du support de démarreur |  |  | * | $\stackrel{\rightharpoonup}{\bullet}$ | $\stackrel{+}{\bullet}$ | $\stackrel{\bullet}{\bullet}$ | $\stackrel{+}{\bullet}$ | : |

NOTA: Tous les boulons, colliers de durits, bomes électriques, raccords de tuyauterie et joints doivent étre vérifiés tous les trois mois pour le serrage et
l'absence de fuites.
$\star$ Remplacer après fes 250 premières heures, puis toutes les 400 heures, jusqu'à ce que lintervalle prolonge de vidange de l'huile soit établl, ce qui dápend du résultat des analyses (voir pages 13-15). Un filtre à huile centrifuge (voir page 29) doit être monté et nettoyé aprés les 250 premierres heures puis toutes
les 400 heures. les 400 heures.
NOTA: Lorsqu'on utilise du gaz autre que le gaz naturel, il es recommandé d'analyser l'huile toutes les 100/150 heures.

* Suivant ce qui survient en premier.

This document has been printed from $\mathrm{SPI}^{2}$. Not for Resale

## Légende

(Fig. 35)
1 Manocontact d'huile
2 Résistance 220 25 w
3 Altemateur de charge
4 Relais répétiteur
5 Démarreur
6 Relais de démarrage
7 Interrupteurs anomalie moteur - Rangées gauche/droite
8 Température de l'eau
9 Pression de l'huile
10 Tous les interrupteurs d'anomalie se ferment en cas d'anomalie. Un côté des interrupteurs d'anomalie est commun. Pour que le moteur tourne immédiatement lorsqu'on appuie sur le bouton de démarrage Gov+ doit être alimenté en 24 Volts +ve. Pour arrêter, couper +ve.
11 Interrupteurs de détection de pression de gaz élevée collecteur gauche/droite
12 Capteur sur volant
13 Commutateurs collecteur gauche/droite pour la protection du collecteur déséquilibré
14 Interrupteur vitesse $700 \mathrm{tr} / \mathrm{min}$.
15 Interrupteur surrégime
16 Unité de vitesse mini/maxi.


Fig. 35

## Légende

(Fig. 36)
1 Alternateur de charge
2 Ampèremètre
3 Pression de l'huile
4 Température de l'huile
5 Température de l'eau
6 Compte-tours
7 Pression de l'huile
8 Température de l'huile
9 Température de l'eau
10 Transmetteurs
11 Manocontact d'huile
12 Démarreur $\mathrm{n}^{\circ} 1$
13 Relais de démarrage
14 Boîte à bornes moteur
15 Démarreur $\mathrm{n}^{\circ} 2$
16 Batteries de démarrage 24 Volt


Fig. 36

SCHEMA DE CABLAGE HEINZMANN ET D'ALLUMAGE DES ANCIENS MOTEURS

## Légende

(Fig. 37)
1 Unité DISN
2 Fiche à 19 broches
3 Fiche à 6 broches
4 Capteur
5 Bouton d'arrèt d'urgence monté sur moteur
6 Câbles HT
7 Bougies d'allumage
8 Bobines d'allumage
9 Ordre d'allumage
10 Bornes avec fusibles
11 Boite à bornes montée sur moteur
12 Actionneur Heinzmann, rangée ' $A$ ' gauche
13 Actionneur Heinzmann, rangée ' $B$ ' gauche
14 Capteurs magnétiques
15 Volant moteur
16 Boîtier de commande Heinzmann rangée ' $A$ ' gauche
17 Boîtier de commande Heinzmann rangée ' $B$ ' droite


Fig. 37

Légende
(Fig. 38)
1 Unité DISN
2 Fiche à 19 broches
3 Fiche à 6 broches
4 Capteur
5 Bouton d'arrêt d'urgence monté sur moteur
6 Câbles HT
7 Bougies d'allumage
8 Disque magnétique
9 Bobines d'allumage
10 Boitte à bornes
11 Capteur magnétique
12 Volant moteur
13 Actionneur Heinzmann, rangée ' $A$ '
14 Actionneur Heinzmann, rangée ' $B$ '
15 Boîtier de commande Heinzmann rangée ' $B$ ' droite
16 Boîtier de commande Heinzmann rangée ' $A$ ' gauche


Fig. 38

## SCHEMA DE CABLAGE DES MOTEURS MINNOX (GAZ) 4012/16 AVEC PROTECTION STANDARD ET EQUIPEMENT DE PROTECTION SELON LE BRITISH GAS COUNCIL EN OPTION

## Légende

## (Fig. 39)

1 Equipement standard
2 Capteur magnétique
3 Volant moteur
4 Unité de vitesse mini/maxi
5 Interrupteur 2 surrégime
6 Interrupteur 1 Vitesse $600 \mathrm{tr} / \mathrm{min}$
7 Boîte à bornes moteur
8 NOTA:
1 La pression élevée du gaz du collecteur et le retour de flamme au carburateur peuvent se trouver sur le même canal d'erreur.
2 Les commutateurs de collecteur déséquilibré peuvent être de type à retour à la terre.
9 Interrupteurs d'anomalie moteur, rangées gauche/droite
10 Température de l'eau
11 Pression de l'huile
12 Commutateurs de collecteur déséquilibré rangées gauche/droite
13 Interrupteurs de pression élevée de gaz rangées gauche/droite
14 Equipement en option
15 Interrupteurs retour de flamme au carburateur rangées gauche/droite
16 Interrupteur d'anomalie faible pression de gaz

17 Les électrovannes de gaz généralement non équipées par Perkins peuvent être au nombre de 4 selon la disposition des canalisations de gaz
18 Electrovannes de gaz excitées pour la marche


Fig. 39

## Légende

(Fig. 40)
1 Unité DISN
2 Fiche à 19 broches
3 Fiche à 6 broches
4 Capteur
5 Bouton d'arrêt d'urgence monté sur moteur
6 Câbles HT
7 Bougies d'allumage
8 Bobines d'allumage
9 Ordre d'allumage
10 Bornes avec fusibles
11 Actionneur Heinzmann, rangée 'A' gauche
12 Actionneur Heinzmann, rangée ' $B$ ' droit
13 Capteurs magnétiques
14 Boîte à bomes montée sur moteur
15 Volant moteur
16 Boîtier de commande Heinzmann rangée ' $A$ ' gauche
17 Boîtier de commande Heinzmann rangée ' $B$ ' droite


## Légende

## (Fig. 41)

1 Unité DISN
2 Fiche à 19 broches
3 Fiche à 6 broches
4 Capteur
5 Bouton d'arrêt d'urgence monté sur moteur
6 Câbles HT
7 Bougies d'allumage
8 Bobines d'allumage
9 Disque magnétique
10 Actionneur Heinzmann, rangée ' $A$ ' gauche
11 Actionneur Heinzmann, rangée ' $B$ ' droit
12 Capteurs magnétiques
13 Boîte à bornes montée sur moteur
14 Volant moteur
15 Boîtier de commande Heinzmann rangée ' $A$ ' gauche
16 Boîtier de commande Heinzmann rangée ' $B$ ' droit


Flg. 41


PERKINS ENGINES (STAFFORD) LIMITED, TIXALL ROAD, STAFFORD ST16 3UB

## $6 Q$ Derking 4012/16TESI (MINNOX) ENGINE (HEAT EXCHANGER COOLED) FRESH AND RAW WATER CIRCULATION DIAGRAM

CIRCULATING FRESH WATER
WATER BYPASS
CIRCULATING RAW WATER
PERKINS ENGINES (STAFFORD) LIMITED, TIXALL ROAD, STAFFORD ST16 3UB Telephone: 01785223141 Fax: 01785215110 Telex: 36156


PERKINS ENGINES (STAFFORD) LIMITED, TIXALL ROAD, STAFFORD ST16 3UB
Telephone: 01785223141 Fax: 01785215110 Telex: 36156

## QQ Perkins 4012/16TESI DISN IGNITION/GAS SYSTEM DIAGRAM



PERKINS ENGINES (STAFFORD) LIMITED, TIXALL ROAD, STAFFORD ST16 3UB
This document has been printed from SPI ${ }^{2}$. Not for Resâle

## CALIFORNIA <br> Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

This document has been printed from $\mathrm{SPl}^{2}$. Not for Resale

```
Asia
Perkins Engines (Asia Pacific) Pte Ltd
Tractor Road
Singapore 627968
Telephone +65 68287469
Fax +656828 }741
```


## Europe, Middle East and Africa

```
Perkins Engines Company Limited
Peterborough PE1 5NA
United Kingdom
Telephone +44 (0)1733583000
Fax +44 (0) 1733582240
```


## North America

```
Perkins Engines Inc
N4 AC 6160
PO Box 610
Mossville, IL 61552-0610, USA
1-888-PERK-ENG
Telephone +1 3095787364
Fax +13095787329
```


## Latin America

```
Perkins Motores do Brasil Ltda
Rua Alexandre Dumas, 1711 Ed. Birman 11, \(9^{\circ}\) andar
Chácara Santo Antonio
São Paulo / SP - Brasil
Cep: 04717-004
Telephone +55 1121092038
Fax +551121092089
```



## Perkins

## www.perkins.com


[^0]:    APRES DEUX TENTATIVES, FERMER L'ARRIVEE DU GAZ ET RECHERCHER LA CAUSE. PURGER LE GAZ AVANT D'ESSAYER DE REDEMARRER LE MOTEUR. POUR CE FAIRE, APRES AVOIR FERME L'ARRIVEE DE GAZ ET LE SYSTEME D'ALLUMAGE, LANCER LE MOTEUR AVEC LE DEMARREUR PENDANT 30 SECONDES MAXIMUM. CETTE OPERATION ELIMINE TOUTE ACCUMULATION DE GAZ DU MOTEUR ET DU SYSTEME D'ECHAPPEMENT. EN ALTERNATIVE, ON PEUT PURGER LE SYSTEME AVEC DE L'AIR COMPRIME. L'OPERATEUR DOIT TOUJOURS ETRE PRET A ARRETER LE MOTEUR EN CAS DE MAUVAIS FONCTIONNEMENT, EN FERMANT L'ARRIVEE DE GAZ OU, EN CAS D'URGENCE, EN APPUYANT SUR LE BOUTON ROUGE QUI RESTE HORS CIRCUIT JUSQU'AU REARMEMENT.

[^1]:    NOTA: Tous les boulons, coiliers de dunits, bornes
    trols mois pour le serrage et l'absence de fuites.

